
Counterexample-Guided Partial Bounding for
Recursive Function Synthesis

Azadeh Farzan and Victor Nicolet

University of Toronto, Canada

Abstract. Quantifier bounding (aka finitization) is a standard approach
in inductive program synthesis to deal with unbounded domains. In this
paper, we propose one such bounding method for the synthesis of recur-
sive functions over recursive input data types. The synthesis problem is
specified by an input reference (recursive) function and a recursion skele-
ton. The goal is to synthesize a recursive function equivalent to the input
function whose recursion strategy is specified by the recursion skeleton.
In this context, we illustrate that it is possible to selectively bound a
subset of the (recursively typed) parameters, each by a proper bound.
The choices of what parameters must be bounded and by how much are
guided by counterexamples. The evaluation of our strategy on a broad
set of benchmarks shows that it succeeds in efficiently synthesizing non-
trivial recursive functions, where standard finitization would fail.

1 Introduction

Most computational tasks can be broken into logical units, many of which involve
evaluating a function over a data collection. Recursively defined data types are
broadly used to implement these collections. In functional languages, recursive
functions implement computations over these recursive data types. Consider a
typical scenario where a programmer has implemented a function f over a col-
lection C by defining a recursive data type A and implementing f as a recur-
sive function fooA. Later, the programmer may need a different implementation
fooB of f over a different data type B; perhaps B is better suited for an op-
timized implementation of f , or the programmer now needs an implementation
of a new function g (in addition to f) over the collection C and the data type
B is a much better choice than A for implementing g efficiently. Ideally, the
programmer should not have to start from scratch implementing fooB .

In this paper, we propose a generic and efficient algorithm for synthesizing
recursive functions in such contexts. Our synthesis problem is specified by the
following three components: (1) a recursive reference implementation that pre-
cisely defines the functionality, (2) a high level recursion skeleton that specifies
a recursion strategy (i.e. a traversal plan over the new recursive data type) for
the target code, and (3) a mapping, called representation function, that converts
an instance of the new data type to one of the old data type (of the reference
implementation), and establishes that the two are different implementations of
the same concept.

2 Azadeh Farzan and Victor Nicolet

Let us illustrate our problem setup with the aid of an example. Consider the
standard A-labelled binary trees, recursively defined as T → Nil | Node(A, T, T)
for an arbitrary type A, and the maximum in-order prefix sum (mips) function

<latexit sha1_base64="2R+AzMmNCcz+Dqwt0YC1Sjg/lZk=">AAAGNHicjVTLbtNAFHVLAsW8WrpkMyKq1AhTOUEVbIIqKkFXqFD6kJKoGo+vk1FnxmZm3DaY/Atb+AD+BYkdYss3cO04UdNEbSeKdH3vOfdx5hEkghvr+78WFm9VqrfvLN11791/8PDR8srjAxOnmsE+i0WsjwJqQHAF+5ZbAUeJBioDAYfByXYePzwFbXisPtlBAl1Je4pHnFGLruOVyupaRxgrYhoKqnop7YHJ2nt9qpPutrdLDaNi6BYYAzaLuEYw1mo1PUFLc9MbU1tZMmIM3TFjEmJUCs8llxbDLCaOIoS2/NkwjsaZsQMBrY61EZVcDDoBojUHMws/gcFZrMOSUKiTBSKF4YQ8yzFWc9WbomgIr2KwWEpQdorS0wDqKpKMNZTEVlt02yUPtwM9dNjNOrXh1fI0PDI363joVmbgs8eV9Yik53OSzVPnLSYw9l3R/Zz8F+s3r60vQErq4f4zD2mgrQfKpFjghs18hPCAxwLsda28uLaVnVjiTyd9buReKm/YwCEX4Z7V9CwArQfXdeG7eMwD6HGV5VcILysepKGL/RPJE0MsaRGanpN13yN+nViXqrBwFKEitaSW9fHrjNt+4fhK3nNBnr8mJpW4j4kZe+MQ1qknPF3H6KStvNYYWVYzRBCuJoiiAYSQZ4QWB2PyVc9JdaLdDqhwaoLj5Zq/4ReLzBqN0qg55do9XllY6oQxS/PTXSjUbviJ7WZUW84EoEypgYSyEzztbTQVlWC6WSH6kKyhJyRRrPGvLCm8FxkZlcYMZIBI1KtvLsdy57xYO7XRq27GVZJaUGxUKEoFsTHJ30IScryTVgzQoExz7JUwfPkos/hiTlUppTHTk4SnuM3lLOejYXLtGpeVmjUOmhuNzQ3/Q7O29aZUccl54jx11p2G89LZcnacXWffYZUvlW+V75Uf1Z/V39U/1b8j6OJCyVl1plb1339NaN52</latexit>

let mips t = aux (0, 0) t

and aux s t =

match t with

| Nil -> sum , mps

| Node(a,l,r) ->

let sum , mps = aux s l in

aux (sum + a, max (sum + a) mps) r

Fig. 1. Maximum in-order prefix sum

depicted on the right. mips

maintains a pair of values:
sum, which keeps track of the
sum of the elements it has
traversed so far, and mps,
which maintains the maxi-
mum value over all such sums.
This reference implementa-
tion precisely defines the functional specification for a function f .

Suppose that the programmer needs an alternative implementation that can
<latexit sha1_base64="I6MgdfRMhdkYWWAFpgpL270jUD4=">AAAFv3icjVRdb9MwFM22Bkb42uCRF4tq0ibClBYmeAkaTII9ocHYh9RGk+PcpGaOHWxnIwr5K/wv/g1Omk7rWq1zlOj63nt87j2xHWaMKu15/5aWVzr2vfurD5yHjx4/ebq2/uxYiVwSOCKCCXkaYgWMcjjSVDM4zSTgNGRwEp7v1fGTC5CKCv5DFxkEKU44jSnB2rjO1lf+bgyZ0kzgiGGe5DgBVQ4OR1hmwZ57gBXBrHKaHAW6jKk0yYbL77sMt+aOO4H6ZTZGVM4EcRUiOGWug24MYlZRIo5Nqu/Nhk1rlChdMPCHWsc4pawYhiZbUlCz6edQXAoZtYBGnTJkOVRX4FmM0pLyZAoiIboNQUSaAtdTkEQC8NtAqZDQAv0BCwYtzvwO48FVUA671e3y9Fw0d9VJ036p4JdLuZ6zzjxhPhus0l+awucsfZ26v5jac38Kyu9I/R2iYyoY6EXEbxYS74vUPDIbUZUe5ukdCzihLDrUEl+GIGWxqArPMfs5hITysj4r5lSaHVM5pn40Qhr5DTjFmtSzS6pHjeMP+koZev0BKW8yFxFsYpe5cqv214IhjDZHiG3VX7nlDIFHUxxna11v22sGmjV6rdG12nFwtr60OowEyeuN1vQw6HmZDkosNSUMTCO5ggyTc7PxBsbkOAUVlI0sFdowngjFQpqXa9R4ryNKnCpVpKHJNP2O1M1Y7ZwXG+Q6fh+UlGe5Bk7GRHHOkBaovpZQRM3x0KwwBiaSmloRMZcQJtpcXlMsrTRqupPogmaq7eX3uJlau95NpWaN4/52b2fb+9bv7n5qVVy1XlgvrU2rZ72zdq1968A6skjH7rzqvO3s2B/txOZ2Nk5dXmoxz62pYRf/Ac+mt/k=</latexit>

let h t =

match t with

| Nil -> s0

| Node(a,l,r) -> join a (h l) (h r)

be efficiently parallelized, and
therefore, opts for the divide-
and-conquer recursion skeleton
depicted on the right. The par-
tially defined code specifies that the tree should be traversed in a manner that
each subtree is processed separately, and then the results should be combined by
a function join. It does not, however, specify what computation is performed;
the implementation of join and the initial value for s0 are unknown. In this
example, labeled binary trees are the recursive data type for both the reference
implementation and the target of synthesis. In cases like this, the representation
function simply becomes the identity function.

Our algorithm reduces the problem to a set of recursion-free synthesis prob-
lems, which are solved using existing synthesis tools. It synthesizes the unknown
computations for join and s0, and therefore produces the divide-and-conquer
implementation of mips on binary trees:

<latexit sha1_base64="lYRdCEk9OaYAXQML2qfR0uvMI3Y=">AAAFwnicjVTbTttAEDUladP0Bu1jX1aNkBLVimxXCF4soVK1PNJSLlISofV6HRb2YnbXgOXmY/pZ/ZuOHYMIiQgbJZrMzJkzc/YSpZwZ63n/Vp6tNprPX7Retl+9fvP23dr6+yOjMk3oIVFc6ZMIG8qZpIeWWU5PUk2xiDg9ji52y/jxFdWGKfnb5ikdCTyWLGEEW3Cdrq/+3RhyY7nCMcdynOExNcXg4AzrdLTr7mNDMJ+0qxxDbZEwDcnAFQYux7W56d5CwyKdIibtW8RdiGDB3TZ6sAhUMSpJIDX05sMwGiPG5pyGQ2sTLBjPhxFka0bNfPoFza+VjmtApU4R8YxO7sDzGGM1k+MZiKbxYwiihKDSzkDGmlL5GEgoTWtgOOCjQY2D7QAPnoyKYWfyuDy+ixZWvR06LAy9dJm0LhL4ZkGxRep8hwLG/qi6X1D/Pn+wnN9zzxWTT6T+ReMjpji1y4i/LCXeUwI+Oj1jRhxk4okNHDMeH1iNryOqdb6sC68NhzqiYyaL8sLA1YRjM2lD/8h4KERdz0Ver/pfioAw6hrYMuH3wADtRNCDLIw+I+OXP0G1TRBHXRGAYxrptYdUxjMMp2sdr+9VC80bfm10nHrtn66vtIaxIll51qoJBr6X2lGBtWWEUxgjMzTF5ALO3gBMiQU1o6ISZYI2wBOjRGn4Sosq731EgYUxuYggU2B7Zh7GSuei2CCzyfaoYDLNLJVkSpRkHFmFypcJxQxuiOU5GJhoBr0iAu8QJhberxmWWhozO0l8xVJTz3IzHabUzn+o1LxxFPT9zb73M+jsfK1VbDkfnU9O1/GdLWfH2XP2nUOHNFqNfmOrsd381jxvXjbNNPXZSo354Mys5p//TZG3Zw==</latexit>

let s0 = (0, 0)

let join a (s1 , m1) (s2 , m2) = a + s1 + s2 , max m1 (m2 + a + s1)

At the high level, the problem of synthesizing a new recursive function can be
framed as checking the validity of formulas of the type ∃f∀x : θ.φ(f, x, . . .) where
θ is a recursive data type (i.e x ranges over a set of inductively defined terms),
f is the target recursive function, and the ellipses stand in for all the relevant
components of our specific problem statement as outlined before. Elements of
type θ are unbounded in two different dimensions: the recursive structure can be
of arbitrary size and each element of it belongs to an unbounded (data) domain.
A straightforward way of under-approximating the unbounded specification is
to bound the universal quantifier ∀x : θ in both dimensions. The synthesis prob-
lem is reformulated to synthesize the function from a bounded set of examples
which are concrete bounded elements of the data type with concrete elements in
them. This can be done by applying a counterexample-guided inductive synthesis
(CEGIS) [33] algorithm in the straightforward way.

Alternatively, one can attempt to tackle the two dimensions independently.
The quantifier ∀x : θ can be bounded in one dimension, i.e. recursive structures of

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 3

bounded size can be considered, and yet the elements of these bounded structures
can range over unbounded domains. More formally, the universal quantification
is instantiated over a finite set of bounded-depth terms, denoted by set T , and
the resulting specification becomes ∃f.∀~a ∈ D.

∧
t∈T φ(f, t) where ~a are the

free variables of the terms in T and of non-recursive type D. This bounding
reduces the original problem to a standard functional synthesis problem (over
unbounded data domains) that can be discharged to one of the many known
solvers, employing a variety of techniques for it. The set of terms in T can
still be discovered in a counterexample guided loop in the spirit of CEGIS, and
therefore this algorithm can be viewed as a symbolic CEGIS variant.

The thesis of this paper is that forcing bounds on all recursively typed vari-
ables is unnecessary and can be avoided algorithmically. A subset of variables can
retain their unbounded quantification and yet the problem can be reduced to a
recursion-free functional synthesis instance. Recall the mips example. The join

function takes two trees, l and r, and a value a as an input. The recursion-free
specification for join can retain a universal quantifier on all trees for l and limit
its bounded exploration to r. In other words, one can successfully synthesize the
join function from examples enumerating a few small candidate trees for r and
treating h(l) (i.e. the result of the computation on l) and not l itself for the
inductive enumeration of examples for synthesis. We discuss in the paper how
this information can be algorithmically derived from the specific components of
our synthesis problem: the reference implementation, the recursion skeleton, and
the representation function.

Beyond the decision on what quantifiers should be bounded, the synthe-
sis algorithm also needs to determine a set of terms that are used to bound
these quantifiers. We propose an algorithm that discovers these bounds guided
by counterexamples in a refinement-style loop. We show that this algorithm is
sound, satisfies the expected weak-progress property that other CEGIS instances
have, and is parsimonious in a precise sense. We have implemented this algo-
rithm as a prototype synthesis tool Synduce and demonstrate that Synduce
can efficiently synthesize recursive functions from specifications.

2 Background & Notation

The notation introduced in this section is used for formalizing the result of
applying recursive functions to symbolic inputs.

Terms. We make use of a set of symbols that are partitioned into terminal
symbols Σ, non-terminal symbols N , and an infinite set of typed variables V.
There is a unique symbol ◦? that stands for a hole. Terms are defined by the
grammar T → x | T T where x is a symbol, and T T is a function application.
These are the relevant classes of terms:

– Concrete terms T (Σ) are those containing only terminal symbols. Every
concrete term can be interpreted and has a concrete value.

– Symbolic terms T (Σ,V) are those containing terminal symbols or variables.

4 Azadeh Farzan and Victor Nicolet

– Closed terms T (Σ,N) are those containing terminal or non-terminal sym-
bols, but no variables.

– Applicative terms T (Σ,N ,V) are those containing any symbol except the
hole symbol.

– Contexts T (Σ,N ,V, ◦?) are those with at least one hole. A one-hole context
C[] is a context with a single occurrence of ◦?, and C[t] stands for the term
formed by replacing the single hole in C[] with the term t.

Two terms are equal, denoted by t =α t
′ (standard alpha conversion), iff there

exists two injective substitutions σ : FV (t) → V \ (FV (t) ∪ FV (t′)) and σ′ :
FV (t′)→ V \ (FV (t) ∪ FV (t′)) such that σt = σ′t′ (i.e. syntactically equal).

A symbolic term t can be expanded into a term t′ iff there exists a substi-
tution σ : FV (t) → T (FV (t′) ∪ Σ) that substitutes the free variables of t for
symbolic terms with the free variables of t′ such that t′ = σt. The relation �
over symbolic terms, is a partial order defined as, t � t′ iff t can be expanded
into t′. A single variable is the maximal element according to this partial order
and concrete terms (of any depth) are minimal elements.

Recursive Functions. This paper focuses on recursive functions f : τ → D
with terms of a recursive type (τ or θ) as input, and an output of type D. These
functions can be executed on concrete or symbolic input terms of type τ . We
assume all functions can be translated to recursion schemes as defined below:

Definition 1 ([25]). A recursion scheme is a tuple P = 〈Σ,N ,R, Λ〉 where:

– Σ is a ranked alphabet of terminals
– N is a finite set of typed non-terminals.
– R is a finite set of rewrite rules, each in one of the following shapes (m ≥ 0):

(pure) F x1 . . . xm → t
(pattern matching) F x1 . . . xm p→ t

where the xi are variables, p is a symbolic term, t is an applicative term in
T (Σ ∪N ∪ {x1, . . . , xn}), and F is a non-terminal.

– Λ : τ → D is a distinguished non-terminal symbol whose defining rules are
always pattern-matching rules.

We associate with each recursion scheme P a notion of reduction. A redex is
an applicative term of the form F σx1 . . . σxm σp for a substitution σ : V →
T (Σ,N ,V) and rule F x1 . . . xm p → t in R. The contractum of the redex
is σt. The one-step reduction relation 7→⊆ T (Σ,N ,V) × T (Σ,N ,V) is defined
by C[s] 7→ C[t] whenever s is a redex, t is a contractum and C[] is a one-hole
context. A recursion scheme is deterministic iff for any redex F s1 . . . sm there
is exactly one rule l → r (in R) which matches that redex, i.e. there exists a
substitution θ such that F s1 . . . sm = θ l.

Given a recursion scheme P = 〈Σ,N ,R, Λ〉 and a term s ∈ T (Σ,N ,V),
L(P, s) denotes the language of (Σ∪N ∪FV (s))-labelled trees resulted from the
maximal rewriting of the term s with the one-step reduction relation associated

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 5

to P. If P is deterministic, then L(P, s) is a singleton (the term s reduces to only
one possible term), and JsKP denotes the unique resulting term. This notion of
reduction is slightly different from the one used in [25], in that we do not require
the substitution to be closed.

Symbolic evaluation. For any function f that can be defined as a recursion
scheme, the symbolic evaluation of f on input s is simply JsKf . In other words,
f(s) = JsKf . In this view, recursive functions and the corresponding recursion
schemes are interchangeable. For a recursion scheme 〈Σ,N ,R, Λ〉 representing a
function f and a variable x, f(x) and Λ x become two different ways of referenc-
ing the same concept. In this paper, we assume that all recursion schemes to be
deterministic total functions. Specifically, they terminate on all inputs; symbolic
evaluation (or the equivalent reduction) of a symbolic term always terminates.

Types Notation. We use capital letters A,B,C, and D to refer to base types,
which are scalar types (int,bool, char, . . .) or unlabeled products of scalar types
(e.g. int× int). Our focus is on functions that take as input elements of recursive
variant (or sum) types denoted by τ, θ, We denote by κ1, . . . , κn the con-
structors of a variant type τ with n variants. Each constructor is assimilated to
a terminal symbol τ1 × . . .× τk → τ , where k ≥ 0. We assume that all recursive
types define finite structures, that is, one can always construct a term of type
τ with a finite number of constructors and elements of base type. x : τ denotes
the judgement x is of type τ , and ∀x : τ denotes the universal quantification of
all variables x of type τ .

In this setting, where we distinguish base types and recursive types, we dif-
ferentiate bounded terms, which are symbolic terms where all free variables
are of base type (in VB), and unbounded terms where some variables can be
of recursive type. An unbounded term t is a symbolic term of finite size, but
there are infinitely many bounded terms that are expansions of t.

3 Formal Definition of the Synthesis Problem

The synthesis problem solved in this paper is defined by three components: a
reference recursive function f : τ → D, a representation function r : θ → τ
that maps inputs of the target function to those of f , and a recursion skeleton
for the target function. All three components are formally modelled by recursion
schemes (Definition 1). f and r are standard recursive functions representable by
deterministic recursion schemes. The recursion scheme for the recursion skeleton
S[Ξ] : θ → D includes a special set Ξ of symbols as a subset of its terminal
symbols, which correspond to the unknown components for synthesis. These
unknowns stand for constants or functions that have to be synthesized.

At the high level, the solution to the synthesis problem is the definition of a
new recursive function. At the low level, each of the unknowns in Ξ need to be
given a definition. In each problem instance, it is assumed that f and S[Ξ] use a
common set of terminal symbols Σ that belong to a background theory T (e.g.
linear integer arithmetic). Formally, the solution is identified by a mapping Z

6 Azadeh Farzan and Victor Nicolet

from the unknowns Ξ to function definitions λx1. . . . λxn.t where n ≥ 0 and t is
a symbolic term in T (Σ, {x1, . . . , xn}) (a concrete term if n = 0). Let S[Ξ/Z] be
the recursion scheme obtained by replacing the unknowns Ξ by their definition
in Z. Any solution Z that satisfies the following specification is a valid solution:

Ψ ≡ ∀x : θ,S[Ξ/Z](x) = (f ◦ r)(x)

Example 1. We use a problem instance with the goal of synthesizing a recursive
function on tree paths as a running example of this paper. Recall the mips func-
tion given in Figure 1. Suppose that we want to transform it to a function on
tree paths1 as an alternative data type to labelled binary trees. For an A-labelled
tree (of type Tree), Path is a datatype defined by the following grammar:

Path → Top | Zip((>|⊥), A,Tree,Path)

Intuitively, a path decomposes a tree as shown on the right.
The path Zip(>, a, ta,Zip(⊥, b, tb,Zip(>, c, tc, x))), from the root
to a leaf decomposes the tree into the subtrees ta, tb, and tc.

f :

Λf t → G (0, 0) t
G s Nil → s
G s Node(a, l, r) → G (L a (G s l)) r
L a (s,m) → (s+ a,max (s+ a,m))

The synthesis problem is
specified by three recursion
schemes. The recursion scheme
f , on the right, models the
function mips from Figure 1.
Λf is the non-terminal corresponding to the main function mips and G is an
auxiliary function. An additional non-terminal L is used to mirror the tuple
decomposition done by the let-binding in the code of mips.

r :

Λr Top → Nil
Λr Zip(>, a, t, z) → Node(a, t, Λr z)
Λr Zip(⊥, a, t, z) → Node(a, Λr z, t)

The second recursion scheme is
the representation function r from
paths to trees. The input path is re-
cursively decomposed by the rewrite
rules, and Node is constructed recursively on the right or on the left depending
on the first value contained in the Zip constructor.

S[s0, gl, gr] :

ΛS Top → s0
ΛS Zip(>, a, t, z) → gl a (Λf t) (ΛS z)
ΛS Zip(⊥, a, t, z) → gr a (Λf t) (ΛS z)

The last recursion
scheme specifies the re-
cursion skeleton of the
target function with un-
knowns s0, gl and gr. It traverses the input path, making recursive calls (ΛS z)
on paths, and calling the reference function on subtrees (Λf t). The goal is then
to synthesize implementations of s0, gl and gr such that S[s0, gl, gr] is equivalent
to f ◦ r.

4 Recursion-Free Approximations

A system of recursion-free equations models an approximation of the full func-
tional specification Ψ for a recursive synthesis problem instance.

1 This example is from [23], which calls this data type zipper.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 7

Definition 2. Given two sets of terminals Σ and Ξ, a system of recursion-free
equations is a finite set of constraints {ei = e′i} where e, e′ ∈ T (Σ ∪Ξ,VB).

We denote by {ei = e′i}i∈I the set of constraints of the system, and {xj}1≤j≤n ≡⋃
i∈I FV (ei) ∪ FV (e′i) are the free variables in the system. The above system

defines a synthesis problem where Σ is the signature of some theory T and Ξ is
the set of unknowns to be synthesized. A solution Z to this synthesis problem
is a mapping from Ξ to function definitions. Z is valid iff the following formula
is valid:

∀x1 : D1. . . .∀xn : Dn.
∧
i∈I

(ei = e′i)[Ξ/Z]

where (ei = e′i)[Ξ/Z] denotes the term in which the unknowns Ξ have been
replaced by their definition in Z. In the rest of the paper, we consider systems of
recursion-free equations where the set of terminals Σ and the set of unknowns
Ξ are fixed and the same as in the main synthesis problem of Section 3. We
say that a system E ′ is a sound approximation of a system E (E ′ & E) (or the
synthesis problem Ψ) when any solution of E (or Ψ) is also a solution of E ′.

4.1 Partially Bounded Quantification

Consider the formal definition of the synthesis problem in Section 3. Bounding
the quantifiers consists in expressing the problem on a finite set of bounded
terms. This bounding effectively eliminates recursion; recursive calls can be in-
lined a bounded number of times. Yet, since the free variables of the bounded
term are universally quantified over an infinite base domain, a bounded term t
of type θ represents an infinite set of concrete inputs (of bounded size).

We propose a different strategy for bounding the quantifiers: we aim to in-
stantiate the quantifier on a finite set of bounded and unbounded terms such that
the resulting specification is not recursive. To start, we instantiate the universal
quantifier by a finite set of arbitrary symbolic terms T . Our first approximation
then becomes the set of constraints:

E(T) = {S[Ξ](t) = (f ◦ r)(t) |t ∈ T} (1)

The set of constraints E(T) can be seen as a synthesis problem where free
variables are universally quantified and the unknowns in Ξ are to be synthesized.
E(T) is not guaranteed to be a system of recursion-free equations for all choices
of T . For an arbitrary symbolic term t, calls to recursive functions may appear in
subterms of S[Ξ](t) and (f ◦ r)(t). Restricting T to bounded terms would yield
a recursion-free system after symbolic evaluation of both sides of the equation.

This, however, is too restrictive. There may exist unbounded terms t where
the equation S[Ξ](t) = (f ◦ r)(t) can be rewritten to an equivalent recursion-
free equation. Intuitively, in an applicative term (resulting from the symbolic
evaluation of a recursive function f) the simple subterms of the form f(x) where
x is a variable can be eliminated by replacing f(x) with a single variable a of
type D which now stands for the result of the invocation of f on any x.

8 Azadeh Farzan and Victor Nicolet

Definition 3. A symbolic term t is maximally reducible (t is a MR-term) by a
recursion scheme P = (Σ,N ,R, Λ) iff JtKP is an applicative term in T (Σ,N ,V)
such that replacing all subterms of the form (Λ x) (where x ∈ V) by a fresh
variable x′ /∈ FV (t) yields a symbolic term.

Example 2. The term z = Zip(>, a, t, Top) where a is an integer and t is of type
Tree is maximally reducible by f ◦ r and S[s0, gl, gr] (cf. Example 1). First we
have r(z) = JzKr = Node(a, t,Nil) and (f ◦ r)(z) = G (L a (Λf t)) Nil . If Λf t
is replaced by (a1, a2) (of type int× int), then the term can be reduced further
to (a1 + a,max(a1 + a, a2)). For the other function, we have S[s0, gl, gr](z) =
gl a (Λf t) s0. If Λf t is also replaced by (a1, a2), then the term reduces to the
symbolic term gl a (a1, a2) s0. Note that z is an unbounded term, since t is a
variable representing a tree of arbitrary depth.

If every term in T is maximally reducible by both (f ◦ r) and S[Ξ], then
every call to a recursive function can be eliminated in E(T). Note that this
new sufficient condition for E(T) to be recursion free is strictly weaker than the
condition of having the terms in T to be bounded; a maximally reducible term
need not be a bounded term.

Definition 4. A set of constraints E(T) = {S[Ξ](t) = (f ◦ r)(t) |t ∈ T} is
well-formed iff every t ∈ T is maximally reducible by f ◦ r and S[Ξ].

A well-formed set of constraints E(T) can be transformed to a system of
recursion-free equations. For each free variable x : θ in E(T), a fresh variable
a : D is added and the subterms (f ◦ r)(x) and S[Ξ](x) are replaced by a in
every constraint. We call this rewriting step recursion elimination over D. Note
that the calls to f ◦ r and S[Ξ] are both replaced by the same variable, since
their equivalence is part of the specification of the synthesis problem.

The transformation described above produces a recursion-free system of equa-
tions, but it does not always yield a sound abstraction, specifically when f ◦ r
is not onto D. There may exist a solution of Ψ that is not a solution of the
resulting system of equations. This can be fixed by having additional constraints
(invariants) on the fresh variables. Let Imf : D → bool a predicate such that
f ◦ r is onto {c | c : D ∧ Imf (c)}. Then, the abstraction is sound if the choices
for a : D are limited to when Imf (a) holds.

Example 3. Recall Example 1. The maximum in-order prefix sum is not onto
int × int, since the second element of the pair is always a positive integer. The
constraint Imf (x, y) = y ≥ 0 is required to make the function onto. In Example 2,
a2 must be a positive integer.

Definition 5. Let T be a set of maximally reducible terms by f ◦ r and S[Ξ],
and Imf a predicate such that f ◦ r is onto {c | c : D ∧ Imf (c)}. We denote
by E(T) the equation system obtained by rewriting each constraint in E(T) to a
recursion free equation, through recursion elimination over {c | c : D ∧ Imf (c)}.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 9

In the synthesis problem defined by E(T), the variables introduced by recur-
sion elimination are universally quantified over their restricted range. The exact
encoding of the range restriction by Imf depends on the implementation of a
synthesis oracle.

Proposition 1. Z is a solution of E(T) iff Z is a solution of E(T).

The proof follows from the construction of E(T) based on E(T). Combining this
with the fact that E(T) results from bounding the universal quantifications in
Ψ , we can conclude that E(T) approximates Ψ .

Theorem 1 (Sound approximation). If T is a set of maximally reducible
terms by f ◦ r and S[Ξ], E(T) is a sound approximation of Ψ .

By construction, any solution of the functional specification Ψ is a solution
of the system of equations E(T).

Example 4. Let T = {Top, Zip(>, a, t, Top), Zip(⊥, a,Nil, z)} be a set of terms,
where a : int, t : Tree and z : Path. Top is a concrete term, therefore maximally
reducible. We saw in Example 2 that Zip(>, a, t, Top) is a MR-term. With a
similar reasoning, one can conclude that Zip(⊥, a,Nil, z) is a MR-term; note
how the term differs in which subterm is unbounded depending on the first
component of the Zip. Therefore, E(T) is a well-formed set of constraints and by
substituting Λf t and ΛS z for (a1, a2) (where a1 : int and a2 ∈ {v : int|v ≥ 0}),
we obtain the following recursion-free system of equations:

E(T) =

 0, 0 = s0,
a1 + a,max(a1 + a, a2) = gl a (a1, a2) s0
a1 + a,max(a1 + a, a2) = gr a s0 (a1, a2)

with free variables a : int, a1 : int and a2 ∈ {v : int|v ≥ 0}.
In contrast to a canonical CEGIS setting, where the approximation is the

specification projected over a finite set of concrete terms, our abstraction is
over an infinite set of concrete terms represented by a finite set of symbolic
terms. In the original functional specification, the equational constraint (f ◦
r)(x) = S[Ξ](x) ranges over all possible terms x of type θ. In the abstraction
E(T), the universally quantified variables are the free variables of the terms in
the equations, which correspond to the variable symbols of scalar type used in
the symbolic terms of T , modulo the introduction of fresh variables during the
rewriting of the set of constraints E(T) to the system of equations E(T).

4.2 Refining Systems of Equations

Our approximation, the system of equations E(T), is parametric on a set of
maximally reducible terms T . This approximation can be refined by adding terms
to T , since for any two set of terms R and T such that R ⊆ T , E(R) & E(T).

The convergence of the refinement process depends on the terms added at
each step. We present our refinement algorithm in the next section, but the
main insights behind it, not tied to specific algorithmic choices, are captured by
Propositions 2 and 3.

10 Azadeh Farzan and Victor Nicolet

Proposition 2. Let T be a set of MR-terms and Z be a solution of E(T). Then
for any term t′ such that there exists t ∈ T s.t t � t′, Z is a solution of E(T∪{t′}).

This proposition implies that if Z is a spurious solution, then a counterex-
ample term showing that it is not a solution of Ψ is necessarily not expanded
from a term in T . We also learn that T should ideally be an antichain of � at
every refinement round, since adding expanded terms does not strengthen the
approximation.

Proposition 3. Given two terms t and t′ such that t � t′ (i.e. t′ is an expansion
of t) and a set of MR-terms T such that ∀x ∈ T,¬(x � t ∧ t � x), we have
E(T ∪ {t}) - E(T ∪ {t′}).

Adding the less expanded term (i.e. t) yields both a more general approximation
and a more compact one. In other words, given a choice, always choose the least
expanded term as the counterexample for refinement.

5 Synthesis Algorithm

Our synthesis algorithm computes a sequence of approximations of the functional
specification Ψ from Section 3. Each approximation is a system of equations of
the form E(T) (Definition 5). The approximations are incrementally refined until
the synthesis solution for one is also a valid solution for the synthesis problem
specified by Ψ .

Initialize T,U

Synthesize E(T)

No solution.

Verify Z

Solution Z.

Generalize
xC → uC ∈ U

(Sec. 5.2)

Expand
uC → T ′, U ′

(Sec. 5.1)

Z

Ctex. xC

U ← U \ {uC}uC

T ← T ∪ T ′

U ← U ∪ U ′

Fig. 2. Approximation refinement algorithm.

Figure 2 illustrates the
work flow of our algorithm.
At the beginning of each it-
eration, a solution of the sys-
tem of recursion-free equa-
tions E(T) is synthesized. If
no solution is found, then
there is no solution for the
original synthesis problem,
since the E(T) is guaranteed
to be a sound approximation
(Theorem 1). If a solution Z
is found, then Z is verified
against Ψ and if it passes,
then it is returned as a solution. Otherwise, the verifier returns a counterex-
ample term xC . By Proposition 2, xC cannot be an expansion of any term in T ,
and new terms related to xC have to be added to T in the spirit of refinement.

The algorithm additionally keeps track of a set U of non-maximally reducible
terms, which intuitively represents the set of inputs not covered by the current
approximation. The sets T and U are complementary in a precise sense: T ∪U is
always a boundary of �. A boundary (of a partial order) is an antichain C such
that for any bounded term t, there is some c in C such that c � t.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 11

The counterexample xC is necessarily an expansion of some term uC ∈ U .
But since uC is by definition not maximally reducible, one cannot just remove
it from U and add it to T . The Expand step takes uC as an input and produces
two sets T ′ and U ′ to update the current sets T and U and repair the boundary
before the loop restarts.

The figure on the right is a graphical representation of the
boundary repair. The sets T (in blue) and U (in red) initially
form a boundary. This boundary is updated by removing the
term uC and adding U ′ and T ′ (the results of the Expand step)
to form a new boundary. The fact that T ∪U always forms a
boundary is a required invariant of this refinement loop: (i)
T , as a parameter of E(T), is required to be an antichain (as
discussed in Section 4.2), and (ii) the Generalize step relies
on the assumption that U is an antichain containing all the
terms not yet sufficiently expanded to be in T .

We rely on existing tools/techniques for the steps Synthesize and Verify of
Figure 2. In the following, we describe the Initialize, Expand, and Generalize steps
of the algorithm.

Initialization. There is a straightforward way to initialize T and U : apply the
Expand component to a single variable x of type θ and take the resulting sets
T of maximally reducible terms and U of non-maximally reducible terms. The
Expand step is described in the next section. For Example 1, a variable x of type
Path is expanded to produce T = {Top} and U = {Zip(⊥, a, t, z),Zip(>, a, t, z)}
with variables a, t, and z of the appropriate types.

5.1 Expand : Producing Maximally Reducible Terms

Given an input term uC , Expand generates two sets T ′ and U ′ such that the terms

T ′ = ∅, U ′ = {uC};
while T ′ = ∅ do

Pick u0 in U ′;
S = ExpandOnce(u0);
T ′, U ′′ = Partition(S);
U ′ = (U ′ \ u0) ∪ U ′′;

end
return T ′, U ′

in T ′ are maximally reducible by both f ◦ r and
S[Ξ]. The algorithm on the right illustrates the
process. At each step, a term u0 is picked from
the set of non-maximally reducible terms U ′. This
term is expanded once, by a call to ExpandOnce
(which is described later). The resulting set of
terms is then partitioned into a set of maximally
reducible terms T ′ and a set of non-maximally re-
ducible terms U ′′; the latter is used to update U ′.

The choice of u0 at the first line of the loop is important for the termination
of the algorithm. There may be an infinite sequence of expansions if the u0’s are
adversarially chosen. There always exists a finite sequence of expansions yielding
bounded terms which are by definition maximally reducible. A breadth-first
exploration of all expansions is one such strategy that ensures the termination
of the algorithm.

12 Azadeh Farzan and Victor Nicolet

ExpandOnce. The input of ExpandOnce is a term u0 that is not maximally
reducible. The following proposition characterizes u0 and the reason for its non-
reducibility:

Proposition 4. Let u0 ∈ T (Σ,V) and g = (Σ,N ,R, Λ) a recursion scheme. u0
is not maximally reducible by g iff there exists a subterm of Ju0Kg of the form
s = F t1 . . . tn x, where F ∈ N and F 6= Λ, the terms t1 . . . tn are applicative
terms, and x ∈ FV (u0).

The proof by cases on the subterms of u0 is given in Appendix A.2. In order
to take a step towards making u0 maximally reducible, the variable x needs to be
expanded. Expanding x into a term guarantees some rule F x1 . . . xn p→ t ∈ R
can be used to reduce u0 further. Such a rule is guaranteed to exist for a recursion
scheme representing a total function.

Next, we define how u0 is expanded at a variable x identified by Proposition 4.
u0 can be written as C[x] for some one-hole context C[]. Assume the type β
of x has constructors κ1, . . . κn where each κi has type γi → β. The pointwise
expansion of u0 at x is the set of terms {C[κ1(x1)], . . . , C[κn(xn)]} where each
xi is a variable (or a tuple) of variables of type γi.

In summary, ExpandOnce first identifies a variable x in u0 (Proposition 4)
that needs to be expanded and then performs the pointwise expansion of u0 at
x and returns the resulting set of terms.

One important feature of ExpandOnce is that terms are expanded only where
needed. Proposition 4 identifies the precise location (i.e. x) where expanding is
necessary and ignores locations where it is not.

Example 5. Recall Example 1. Suppose u0 = Zip(>, a, t, z) is a (symbolic) path
and an input to ExpandOnce, where a is an integer, t is of type Tree, and z
is of type Path. u0 is not maximally reducible and has to be expanded. Note
that r(u0) = Node(a, t, Λr z) and therefore (f ◦ r)(u0) = G (L a (Λf t)) (Λr z).
The subterm (Λr z) blocks the reduction of the term starting with G, because
z blocks the reduction of Λr z and therefore, u0 has to be expanded at z. The
pointwise expansion of u0 at z yields the terms u1 = Zip(>, a, t, Top), u2 =
Zip(>, a, t,Zip(>, a′, t′, z′)), and u3 = Zip(>, a, t,Zip(⊥, a′, t′, z′))}. Note that
the tree element t need not be expanded; we showed in Example 2 that u1 is
maximally reducible and therefore, the expansion loop stops and returns T ′ =
{u1} and U ′ = {u2, u3}.

Consider the symmetric term Zip(⊥, a, t, z) acquired by replacing the > in
u0 with ⊥. The expansion of this term yields T ′ = Zip(⊥, a,Nil , z) and U ′ =
{Zi(⊥, a,Node(a′, l, r), z)}. Note that unlike the case for u0, the tree element of
the path has to be expanded and the path element need not be expanded.

5.2 Counterexample Generalization

The generalization of the counterexample xC is the unique term uC ∈ U such
that uC � xC . The term uC is guaranteed to exist because the algorithm main-
tains the invariant that T ∪ U is a boundary, and it is unique since U is always
an antichain.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 13

Example 6. After initialization, the synthesis solver attempts to find a solution
for the system of equations given in Example 4. One possible solution is

s0 = (0, 0) gl(a, (s1,m1), (s2,m2)) = a+ s1,max(m1, a+ s1)

together with a similar solution for gr. But the solution for gl is incorrect;
the first component should be a + s1 + s2 (i.e. the sum of both partial sums
and the label of the node). The verifier returns a counterexample of the form
xc = Zip(>, 1,Node(?),Zip(>,−2,Node(?), ?)) where the question marks stand
for concrete subterms of the appropriate type. These subterms are ignored. The
counterexample is generalized by selecting u2 = Zip(>, a, t, Zip(>, a′, t′, z′))
(where u2 � xC), the term that was stored in U after the expansion described
in Example 5. This determines where the algorithm must unfold the path one
more time to build a stronger approximation.

We report in Section 7 that Synduce succeeds in finding a solution for
this example with 3 refinement rounds in 1.57s, whereas the symbolic CEGIS
(described in Section 1) times out after 10min over 6 refinement rounds.

5.3 Algorithm Properties

Soundness. Under the assumption that the steps Synthesize and Verify are
soundly implemented, the overall algorithm is sound. By construction, T is al-
ways a set of maximally reducible terms. Therefore, E(T) is a guaranteed to be
a sound approximation of Ψ by Theorem 1. The soundness of the verification
oracle guarantees that any returned solution is in fact a solution of the synthesis
problem specified by Ψ .

Weak Progress. Consider the naive algorithm that would expand T by simply
adding the counterexample xC to it; xC is a maximally reducible term after
all. This naive algorithm satisfies a weak progress property, namely that, the
spurious solution Z from any round will not be a solution in any future round.
Our algorithm does something more sophisticated and therefore it has to be
argued that the same weak progress property holds. First, Expand satisfies the
following property that guarantees T ∪ U to always be a boundary:

Proposition 5. Let t be some symbolic term and T ′, U ′ be the results of the call
to Expand(t). Then T ′ ∪ U ′ is a boundary of the set {t′|t � t′}.

Let uC be the generalization of xC . Proposition 5 guarantees that Expand
computes and adds all possible expansions of uC to T . This in turn implies
that there always exists a term t � xC in the updated set T (after the call to
Expand), which rules xC out as a spurious solution in all future rounds. Note
that the algorithm relies on the existence of uC in U . For this, it requires T ∪U
to be a boundary.

14 Azadeh Farzan and Victor Nicolet

Parsimony. Finally, we can show that our algorithm is parsimonious with the
selection of the terms for T in the following precise way:

Theorem 2. [Parsimony] Let us assume (T,U) is a boundary that our algo-
rithm reaches in some round, then (T,U) is optimal in the following two senses:

– for every t ∈ T ∪ U there is no MR-term t′ such that t′ � t.
– there is no non-empty subset T ′ of T and set U ′ such that (T \ T ′)∪U ′ is a

boundary and E(T \ T ′) - E(T).

Intuitively, all the terms in T are expanded to the extent necessary and
no proper subset of T can form a boundary that maintains the same precise
approximation that T ∪ U induces. A proof is given in Appendix A.5.

6 Implementation

Our approach is implemented in Synduce [35], a tool written in OCaml [21],
and the inputs are recursive functions and datatypes written in Caml.

6.1 Verification and Synthesis Oracles

Synduce uses bounded model checking to implement Verify from Figure 2. A
bounded check for the validity of a synthesis solution Z is encoded as the validity
of the formula ∧t∈T∀a ∈ FV (t).S[Ξ/Z](t) = (f ◦ r)(t) for a set of bounded terms
T . Z3 [24] is used as the backend SMT solver, which produces a counterexample
in the form of a term for which at least one equality constraint is invalid.

Synduce spends most of its time in the Synthesize box of Figure 2. Since the
input to Synthesize is guaranteed to be a recursion-free synthesis specification,
any off-the-shelf syntax-guided synthesis (SyGuS) [4] solver that supports the
standard language [28] can be used to implement Synthesize. We use CVC4 [5]
for the results presented in this section.

A SyGuS problem is specified by a grammar describing the space of programs
to be synthesized and a set of constraints. In this case, the grammar is generated
from the type of the functions to be synthesized (the unknowns in Ξ), which
can be inferred from the constraints where they appear. Instances of generic
grammars for integers and booleans can be found in the SyGuS language spec-
ification [28], and these grammars for base types can be combined into tuples
in a straightforward manner. The constraints are the equations of the system,
with the addition of the predicates constraining the domain of the variables, i.e.
Imf from Definition 5. Each recursion-free equation e = e′ is translated to a
constraint of the form ¬(

∧
v∈FV (e)∪FV (e′) Imf (v)) ∨ e = e′ where Imf (v) is the

predicate associated to the variable v.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 15

6.2 Baseline Method

The goal of our experimentation is to evaluate the efficiency and efficacy of the
proposed partial quantifier bounding approach for synthesis of recursive pro-
grams. Since there is no available (automated) tool that solves the specific prob-
lem posed in this paper, we implemented the symbolic CEGIS technique (as
outlined in Section 1) to serve as a baseline. To be precise, the algorithm of
Figure 2 is modified by removing the Generalize and Expand steps; the symbolic
counterexample returned by the verification at each step is added directly to the
set of terms instead of being generalized. The set T is also initialized as a set of
bounded terms of some minimal depth, depending on the particular definition
of the data type. Note that since the baseline method is counterexample-guided,
it is better than the more straightforward finitization techniques, for example,
manual finitization by a preset bound.

We also implemented the concrete CEGIS method (outlined in Section 1) to
confirm that the symbolic CEGIS is the better choice. Symbolic CEGIS solves 6
more benchmarks than concrete CEGIS, and does better time-wise in the vast
majority of the rest. The detailed results of the comparison between the three
algorithms are given in Appendix B.2.

6.3 Optimizations

We implemented a few simple, straightforward and generic (i.e. they can be
incorporated in any SyGuS solver) optimizations. These aim to compensate for
the brittleness of the SyGuS solvers, which can fail for very simple constraints
for no good reason. Here is a brief overview of these optimizations, which are
applicable to any system of equations (baseline’s and ours):

– Syntactic definitions, which are those that define an unknown function ξ
unequivocally in the form of ξ(x1, . . . , xn) = t, can be identified quickly and
eliminated from the synthesis task to simplify it.

– A system of equations can be split into independent subsystems by identifying
an independent subsets of equations. A subset of equations is independent
if it constrains a subset of the unknowns that does not appear in the rest
of the set of equations. Identification of independent subsystems generates
simpler subproblems.

– Instead of starting from a default initial state, we can start from a set of
terms that makes for an interesting first round and consequently saves a few
refinement rounds from the solution. We form a set of initial terms by using
the Expand routine to expand enough terms such that each unknown appears
in at least one constraint in the approximation for the first round.

These optimizations are applied to both the baseline method and our al-
gorithm for the purpose of evaluation. Appendix B.3 includes more detailed
evaluation of them and experimental results illustrating their precise impact on
each algorithm.

16 Azadeh Farzan and Victor Nicolet

7 Evaluation

We evaluate Synduce on a broad set of benchmarks. Our benchmarks are
grouped into six categories. Table 1 lists all the benchmarks, grouped accord-
ingly. Each category, shares the same representation function and polymorphic
recursion skeleton, but a different reference implementation is used to specify
the synthesis problem. The recursion skeletons (and the representation func-
tions) are polymorphic and therefore reusable. Only 9 different skeletons and
4 different representation functions were used across our 43 benchmarks. More
details about the benchmarks appear in Appendix B.1, including the skeletons
used in each category.

7.1 Case Studies

Changing Tree Traversals. An example of this category is the mips example
used in the introduction. The reference function is a natural implementation
of a function with a post- or in-order traversal of a binary tree. The target
is an equivalent implementation corresponding to the divide-and-conquer tree
homomorphism style recursion.
From Trees to Paths. A tree path (zipper in [23]) is a data structure used
to represent a tree together with a subtree that is the focus of attention. Our
running example belongs in this category. The other benchmarks in this category
are from [23].
Enforcing Tail Recursion. In this category, the reference implementation
is a direct-style recursion on the data structure, while the recursion skeleton
specifies that an accumulator should be used to make the function tail-recursive.
Tail recursive functions generally compile to more efficient code.
Combining Traversals. Suppose a collection of existing implementations com-
putes different functions with different traversals of the same data structure. If in
some larger context all of these functions need to be computed, combining them
can lower the amortized cost. In this set of benchmarks, we synthesize automati-
cally the implementation that corresponds to traversing the data structure with
a single recursion strategy, combining the computations into one.
Tree Flattening. These benchmarks target the synthesis of an implementation
on the more complex plane tree data structure from a reference implementation
on the simpler binary tree data structure.
Parallelizing Functions on Lists. Parallelizing a function on lists can be
seen as the translation of a recursive function on cons-lists to a homomorphic
function on lists built with the concatenation operator. These benchmarks are
from [7,8,22].

7.2 Experimental Results

To best of our knowledge, there are no available tools that can be directly com-
pared against Synduce. We can transform our specification to a format that
can be accepted by Leon [17]. However, the latter does not succeed in solving

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 17

Table 1. Experimental Results. Benchmarks are grouped by categories introduced in
Section 7.1. # steps indicates the number of refinement rounds. Tlast is the elapsed
time before the last call to the SyGuS solver in the last refinement step before timeout.
All times are in seconds. The best time is highlighted in bold font. A ’-’ indicates
timeout (> 10 min). The “Inv” column indicates if codomain constraints were required.
Experiments are run on a laptop with 16G memory and an i7-8750H 6-core CPU at
2.20GHz running Ubuntu 19.10.

Class Benchmark Inv.
Synduce Baseline Method

time # steps Tlast time # steps Tlast

sum no 0.03 2 0.01 0.04 3 0.02
max no 0.33 1 0.00 0.34 2 0.01

max 2 no 0.25 1 0.00 0.34 2 0.01
Changing min no 0.23 1 0.00 0.32 2 0.01

Tree min-max no 0.85 3 0.15 73.16 3 0.06
Traversals max weighted path no 0.09 3 0.03 0.07 3 0.02

sorted in-order no 0.01 1 0.00 43.97 4 1.98
pre-order poly. no 16.09 2 0.06 - 4 0.97

mips yes 0.29 2 0.04 - 4 2.70
in-order mts yes 0.41 2 0.04 - 4 4.84

post-order mps yes 132.14 4 82.56 - 6 39.29
sum no 0.07 2 0.02 0.06 3 0.02

From height no 0.90 1 0.00 1.24 5 0.43
Tree to max weighted path no 0.15 2 0.03 0.12 3 0.03
Path max w. path (hom) no 0.01 1 0.00 1.42 4 0.69

leftmost odd no 0.01 1 0.00 - 4 0.27
mips yes 1.57 3 0.50 - 7 322.45

Enforcing sum no 0.02 2 0.01 0.03 3 0.02
Tail mts no 5.86 2 0.02 115.58 3 0.06

Recursion mps no 1.68 2 0.02 0.34 3 0.03
Combining mts + sum no 9.71 2 0.02 5.42 3 0.03
Traversals sum + mts + mps yes 0.26 3 0.12 - 3 0.04

sum no 0.07 3 0.04 0.07 2 0.01
Tree product no 0.07 2 0.01 0.16 2 0.01

Flattening max of heads no 0.21 2 0.02 0.18 3 0.03
max of lasts no 0.21 2 0.02 0.33 3 0.03

max sibling sum no 5.26 2 0.03 2.72 3 0.04
sum no 0.08 1 0.00 0.30 3 0.04

sum of even elts. no 0.10 1 0.00 0.39 3 0.04
length no 0.07 1 0.00 0.22 4 0.05

last no 0.01 1 0.00 0.03 2 0.01
Parallelizing product no 0.07 1 0.00 0.31 3 0.04

Functions polynomial no 0.07 1 0.00 0.71 5 0.10
on hamming no 0.10 1 0.00 0.46 3 0.04

Lists min no 0.02 1 0.00 0.08 2 0.01
is sorted no 3.45 2 0.11 3.12 4 0.14

linear search no 0.08 1 0.00 0.35 3 0.04
line of sight no 0.86 2 0.09 7.67 4 0.34

mts yes 0.10 1 0.00 4.80 4 0.08
mps yes 0.09 1 0.00 4.73 4 0.08

mts and mps combined yes 0.38 2 0.11 210.84 6 36.77
mss yes 4.82 3 1.53 - 6 24.23

count max elements no 138.20 1 0.00 - 3 0.46

18 Azadeh Farzan and Victor Nicolet

even the simplest of our benchmarks (e.g. sum in the list function parallelization
category), likely due to the fact that the required deductive rules are missing.
We comment on the rest of the available tools in Section 8.

Table 1 presents the results of comparing Synduce against the baseline
method. Both techniques use symbolic counterexamples, and therefore, the com-
parison can highlight the performance impact of our partial bounding algorithm.
The most important point of comparison is the overall synthesis time. In 9 out
of 43 benchmarks, the baseline method times out. In another 5 cases, it outper-
forms the baseline by two orders of magnitude. In the easiest of the benchmarks,
i.e. when the overall synthesis time of the baseline is in tens of milliseconds, the
two methods are equally good within a small margin of error. The bold number
in each row highlights the fastest synthesis time.

Amongst the 9 benchmarks for which the baseline algorithm times out, 7 are
cases where Synduce takes advantage of partial bounding by leaving some quan-
tifiers unbounded. The baseline algorithm in these cases requires more terms and
terms of higher complexity in the finite approximations. Two of the 9 benchmarks
(post-order mps and sum + mts + mps) are cases where the set of maximally
reducible terms is exactly the set of bounded terms (i.e. one cannot take advan-
tage of partial bounding), but Synduce still outperforms the baseline because it
adds smaller terms to the abstraction through generalization and produces less
complex problems for the backend synthesis oracle. In summary, both counterex-
ample generalization and the partial bounding yield big practical advantages in
comparison with the baseline symbolic CEGIS algorithm.

It is noteworthy that whenever an instance is hard, the majority of the time
is spent in the Synthesize step. This becomes nearly 100% of the time for the
baseline algorithm whenever it times out. The weakness of the baseline method
lies in the fact that the recursion-free instances generated by it are too difficult
to solve by the backend solver. The timeout occurs within a few refinement
rounds (at most 7) when the baseline algorithm gets stuck in the Synthesize step
attempting to solve a prohibitively difficult recursion-free synthesis instance.

Across all benchmarks, our algorithm generally requires fewer refinement
rounds than the baseline method. The few exceptions are the cases where the
synthesis oracle gets lucky in producing a good solution when the target pro-
grams are very simple, for example in the case of the sum and product bench-
marks of the flat tree category.

Finally, to isolate the precise contribution of the partial bounding idea, we
evaluated the effect of each optimization on each algorithm. The applicability of a
particular optimization highly depends on the particular set of constraints, which
in turn depends on the specific benchmark and the algorithm (ours vs baseline)
producing the constraints. Our synthesis algorithm yields more general and more
succinct constraints, to which the optimizations are more often applicable. Of
the 9 cases where Synduce succeeds and the baseline method times out, 7 are
due to the inapplicability of these (simple) optimizations. Synduce outperforms
the baseline algorithm with all optimizations turned off for both. The complete
ablation results are given in Table 3 of Appendix B.3.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 19

8 Related Work

Synthesizing recursive programs is a challenging task, and several automated
techniques have tackled the problem with different specifications of the problem
and different approaches to the solution.

Finitization, for example by bounding the depth of unbounded inputs or
the number of recursive calls or loop iterations, is a straightforward way of
dealing with unboundedness in synthesis [36,4] and verification [9]. In [31,32],
high-level synthesis techniques use domain specific knowledge to finitize input
programs. Quantifier instantiation, i.e. replacing quantified terms with ground
terms, is commonly used in theorem proving and verification, and has also been
useful in synthesis [30]. Our proposed algorithm can be viewed in the spirit of
quantifier instantiation, with the major difference that (universally) quantified
terms are replaced with other (universally) quantified terms which are still over
an unbounded domain, yet with fewer degrees of freedom in unboundedness.

Synthesis through Program Transformation. Our precise problem state-
ment is inspired by the transformation system developed by Burstall and Dar-
lington [6]. They set to automate the task of transforming an initial program
specified as a set of first-order recursion equations into a more efficient program,
by altering the recursive structure. Their approach is based on transformation
rules and semi-automatic. They use specific rules, e.g. associativity of a data
operation, to perform the transformations and such rules do not generalize well.
We defer the reasoning about the operations on the data to an SMT solver, and
therefore need not rely on such rules. Techniques based on program transforma-
tion have been applied to the synthesis of special classes of recursive programs
before [12,14]. For example, the work in [1] focuses on tail recursion and a lot of
attention has been given to producing divide-and-conquer recursions in the way
of automated parallelization [7,2,22].

Synthesizing Recursive Functional Programs. Inductive techniques were
developed to construct recursive programs from input/output examples [34], and
this approach has been extended in more recent work [15,16]. The latter two are
examples of an analytical approach to program synthesis in which programs are
constructed from the analysis of examples. Other recent approaches are search-
based methods. Escher [3] synthesizes recursive functions from user-provided
components by interactively asking for more examples from the user. λ2 [10]
synthesizes data structure transformations from input/output examples using
higher-order functions.

Tools like λ2 and Escher can be complementary to Synduce in a more
general context of recursion synthesis. The user can try to synthesize an imple-
mentation of a recursive function over a simple data type using λ2 or Escher
using input/output examples with a higher chance of success. This then serves
as the reference implementation input to Synduce which can aim for a more
sophisticated implementation over a more complex recursive datatype.

Myth [26], Myth2 [11] and SynQuid [27] use type information to direct
the search for a program satisfying a specification. In Myth, this specification

20 Azadeh Farzan and Victor Nicolet

is a set of input/output examples. Myth2 generalizes this approach by treat-
ing examples as limited types. The specification for Synquid is a polymorphic
refinement type, and the tool synthesizes an implementation of the given type
using components provided by the user. Type-based approaches work well within
the expressivity of refinement-types as specifications, but refinement types can-
not express constraints for all desired synthesis tasks. Our specification is strictly
stronger than both input/output examples and refinement types.

In SyntRec [13], reusable templates are used to facilitate the synthesis of al-
gebraic data type (ADT) transformations. The reusable templates are meant to
lessen the burden of the user in specifying the search space of the programs to be
synthesized every time. The recursion skeletons in our framework are effectively
(reusable) polymorphic recursion templates. The user can be provided with a
library of common recursive datatypes with representation functions mapping
between these types, and useful recursion skeletons on these datatypes. Syn-
tRec [13] synthesizes ADT transformations from a functional specification. In
contrast, our tool takes this transformation as input (the representation func-
tion) and synthesizes a function from ADT to a base type.

Leon [17] , a deductive verification and synthesis framework, can synthesize
recursive functions from first-order specifications with recursive predicates. In
Section 7, we commented on a comparison of Leon against Synduce.

Higher-Order Recursion Schemes. We use recursion schemes as a model
for our programs, but our contribution has very little to do with the original
work introducing this model. Higher-order recursion schemes have been intro-
duced for model checking functional programs [18,20,19,29]. Pattern matching
recursion schemes, introduced in [25], provide a model for functional programs
that manipulate ADTs. We use them as an accurate description of a class of
functions on ADTs and the notion of reduction associated with them as a crisp
way of formulating symbolic evaluation.

9 Discussion and Future Work

We have demonstrated that partial bounding of quantifiers can be a power-
ful tool for the synthesis of recursive programs. Circumventing the unnecessary
bounding of some quantifiers leads to simpler instances of recursion-free synthesis
subtasks that can be handled by the current tools. Moreover, our counterexam-
ple generalization also yields simpler terms for bounding the quantifiers that
have to be bounded. This is the result of our focus being on a class of recur-
sive functions that perform structural recursion (i.e. recursion that deconstructs
its inputs). This, together with our specific problem setup, takes the guesswork
out of counterexample generalization and provides the means for a constructive
counterexample generalization scheme which is demonstrably effective.

The reliance on structural recursion, therefore, limits the class of reference
implementations and recursion skeletons that can define an acceptable synthesis
instance in our framework. Another limitation tied to the input model is that

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 21

the output of the recursive functions has to belong to the base (non-recursive)
types to accommodate the reduction of the problem to one that can be solved
by a backend solver. Consequently, the unknowns in a target recursion scheme
have to all be functions from base types to base types.

In our problem setup, the recursion strategy (given by the recursion skeleton)
is an integral part of the specification since it is used to communicate program-
mer intent. Expecting a complete recursion skeleton may be viewed as another
limitation of our technique. For example, the mts (maximal tail sum) function
can be computed as function on a list maintaining only one integer value (i.e.
the current value of the maximum tail sum), yet, to implement mts in a divide-
and-conquer strategy, another computation, the sum of the elements of the list,
has to be performed alongside this one. It would be great if the user can ask
for a divide-and-conquer recursion strategy without having to know that the
additional computation of sum is required as well.

Ideally, the user should be permitted to provide an incomplete recursion skele-
ton which sufficiently communicates the intent and leave the recursion skeleton
to be completed automatically by the synthesis procedure. This is a tricky prob-
lem. There are not only many recursion strategies to choose from, but each choice
also leads to unboundedly many ways to organize the computation on data. This
adds yet another dimension of unboundedness to the synthesis problem beyond
the two already tackled in this paper. Note that in other recursion synthesis
work such as [3,13,27,11], new operations on data are not synthesized, and in
contrast drawn from an existing pool of operations. Therefore, this particular
problem does not apply in those contexts.

Finally, our method currently does not take into account invariants over
recursive data types, e.g. an invariant that specifies that a tree is a binary search
tree. Some properties of the datatypes can be encoded through the representation
function, e.g. the associativity of the concatenation operator in the category
of list parallelization benchmarks. Incorporating the more general invariants in
future work will broaden the expressivity of the framework in handling more
interesting problems.

22 Azadeh Farzan and Victor Nicolet

References

1. Abrahamsson, O., Myreen, M.O.: Automatically Introducing Tail Recursion
in CakeML. In: Trends in Functional Programming. pp. 118–134. Lecture Notes in
Computer Science, Springer International Publishing (2018)

2. Ahmad, M.B.S., Cheung, A.: Automatically Leveraging MapReduce Frameworks
for Data-Intensive Applications. In: Proceedings of the 2018 International Confer-
ence on Management of Data. SIGMOD ’18, ACM (2018)

3. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive Program Synthesis. In: Com-
puter Aided Verification. pp. 934–950. Lecture Notes in Computer Science, Springer
(2013)

4. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
2013 Formal Methods in Computer-Aided Design. pp. 1–8. IEEE (2013)

5. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Computer Aided Verification. pp. 171–177.
Lecture Notes in Computer Science, Springer (2011)

6. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. Journal of the ACM 24(1), 44–67 (1977)

7. Farzan, A., Nicolet, V.: Synthesis of Divide and Conquer Parallelism for Loops. In:
Proceedings of the 38th ACM Conference on Programming Language Design and
Implementation. PLDI ’17 (2017)

8. Fedyukovich, G., Ahmad, M.B.S., Bodik, R.: Gradual synthesis for static paral-
lelization of single-pass array-processing programs. In: Proceedings of the 38th
ACM Conference on Programming Language Design and Implementation. PLDI
2017 (2017)

9. Feldman, Y.M.Y., Padon, O., Immerman, N., Sagiv, M., Shoham, S.: Bounded
Quantifier Instantiation for Checking Inductive Invariants. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 76–95. Lecture Notes in
Computer Science (2017)

10. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Proceedings of the 36th ACM Conference on Pro-
gramming Language Design and Implementation. PLDI ’15 (2015)

11. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed Synthesis:
A Type-theoretic Interpretation. In: Proceedings of the 43rd ACM Symposium on
Principles of Programming Languages. POPL ’16 (2016)

12. Hamilton, G.W., Jones, N.D.: Distillation with labelled transition systems. In:
Proceedings of the ACM 2012 Workshop on Partial Evaluation and Program Ma-
nipulation. pp. 15–24. PEPM ’12, ACM (2012)

13. Inala, J.P., Polikarpova, N., Qiu, X., Lerner, B.S., Solar-Lezama, A.: Synthesis of
Recursive ADT Transformations from Reusable Templates. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Lecture Notes in Computer
Science (2017)

14. Itzhaky, S., Singh, R., Solar-Lezama, A., Yessenov, K., Lu, Y., Leiserson, C.,
Chowdhury, R.: Deriving divide-and-conquer dynamic programming algorithms
using solver-aided transformations. In: Proceedings of the 2016 ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications. pp. 145–
164. ACM (2016)

15. Katayama, S.: An analytical inductive functional programming system that avoids
unintended programs. In: Proceedings of the 2012 Workshop on Partial Evaluation
and Program Manipulation. PEPM ’12 (2012)

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 23

16. Kitzelmann, E., Schmid, U.: Inductive Synthesis of Functional Programs: An Ex-
planation Based Generalization Approach. Journal of Machine Learning Research
7(15), 429–454 (2006)

17. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive func-
tions. In: Proceedings of the 2013 International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’13 (2013)

18. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of the 36th ACM Symposium on Principles of
Programming Languages. POPL ’09 (2009)

19. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of the 32nd ACM Conference on Program-
ming Language Design and Implementation. pp. 222–233. PLDI ’11 (2011)

20. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Proceedings of the 37th
ACM Symposium on Principles of Programming Languages. POPL ’10 (2010)

21. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.11: Documentation and user’s manual p. 823

22. Morihata, A., Matsuzaki, K.: Automatic Parallelization of Recursive Functions
Using Quantifier Elimination. In: Proceedings of the 10th International Conference
on Functional and Logic Programming. FLOPS’10 (2010)

23. Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: The Third Homomorphism The-
orem on Trees: Downward & Upward Lead to Divide-and-conquer. In: Proceedings
of the 36th ACM Symposium on Principles of Programming Languages. POPL ’09
(2009)

24. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Tools and Algorithms
for the Construction and Analysis of Systems. pp. 337–340. Lecture Notes in Com-
puter Science, Springer (2008)

25. Ong, C.H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: Proceedings of the 38th ACM Sym-
posium on Principles of Programming Languages. POPL ’11 (2011)

26. Osera, P.M., Zdancewic, S.: Type-and-example-directed Program Synthesis. In:
Proceedings of the 36th ACM Conference on Programming Language Design and
Implementation. PLDI ’15 (2015)

27. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program Synthesis from Polymorphic
Refinement Types. In: Proceedings of the 37th ACM Conference on Programming
Language Design and Implementation. PLDI ’16 (2016)

28. Raghothaman, M., Reynolds, A., Udupa, A.: The SyGuS Language Standard Ver-
sion 2.0 p. 22

29. Ramsay, S.J., Neatherway, R.P., Ong, C.H.L.: A type-directed abstraction refine-
ment approach to higher-order model checking. In: Proceedings of the 41st ACM
Symposium on Principles of Programming Languages. POPL ’14 (2014)

30. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
Guided Quantifier Instantiation for Synthesis in SMT. In: Computer Aided Verifi-
cation. pp. 198–216. Lecture Notes in Computer Science (2015)

31. Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.:
Sketching stencils. In: Proceedings of the 28th ACM Conference on Programming
Language Design and Implementation. PLDI ’07 (2007)

32. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures.
In: Proceedings of the 29th ACM Conference on Programming Language Design
and Implementation. PLDI ’08 (2008)

24 Azadeh Farzan and Victor Nicolet

33. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems. pp.
404–415. ASPLOS XII (2006)

34. Summers, P.D.: A Methodology for LISP Program Construction from Examples.
Journal of the ACM 24(1), 161–175 (1977)

35. Victor, N.: Synduce, https://github.com/victornicolet/Synduce
36. Yang, W., Fedyukovich, G., Gupta, A.: Lemma Synthesis for Automating Induction

over Algebraic Data Types. In: Principles and Practice of Constraint Programming.
pp. 600–617. Lecture Notes in Computer Science (2019)

https://github.com/victornicolet/Synduce

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 25

A Proofs

In this section we give additional proofs and justification for the results presented
in this paper. Note that we always assume that terms and recursion schemes are
well-typed. In this section, we also assume that the terms in T have unique
variables. That is, a variable in a term of T appears only once in the term,
and it appears only in this term. This invariant is guaranteed by the pointwise
expansion introducing fresh variables every time it is called.

A.1 Additional Notation

We use some additional notation in the proofs. Throughout this paper, we are
specifically interested in the expansions of terms of recursive type. Given a term
t, we denote the free variables of t that are of recursive type by FVr(t). Given
a term t and a substitution function θ : FV (t) → T (Σ,V), we denote (as in
the main body of the paper) by θt the term resulting from substituting all
occurrences of variables in t by the image in the substitution function. Given a
variable x ∈ FV (T), θ(x) denotes the image of x by the substitution function θ.

Termination and Structural Recursion Note that in the paper, we assume
the symbolic reduction to be terminating on all symbolic inputs. This implies
that if a recursion scheme (Σ,N ,R, Λ) has a rule F x1 . . . xm p→ t in R, and p
is of type θ, then there for each constructor κ of the type θ, there is a rule of the
form F x1 . . . xm κ(t)→ t where t is a tuple of symbolic terms. We also assume
that recursion is purely structural: a rule with head non-terminal F that is not
pattern-matching cannot have a recursive call to F (an applicative subterm with
head F) in the right-hand side of the rule. As a result, any non-terminal symbol
used for non-pattern-matching rules always disappears from symbolic reduction
results (i.e. the rule can always be applied).

A.2 Proof of Proposition 4

Let us first remind the proposition that identifies why a term u0 is not maximally
reducible:

Proposition 4. Let u0 ∈ T (Σ,V) and g = (Σ,N ,R, Λ) a recursion scheme. u0
is not maximally reducible by g iff there exists a subterm of Ju0Kg of the form
s = F t1 . . . tn x, where F ∈ N and F 6= Λ, the terms t1 . . . tn are applicative
terms, and x ∈ FV (u0).

Proof. Let u0 be a symbolic term in T (Σ,V) that is not a MR-term by g. We
assume g has type α→ D where α is some recursive type. By definition of max-
imally reducible terms, there are applicative terms of the form F t1 . . . tn tn+1

in JuKg, otherwise JuKg would be a symbolic term, and therefore u0 an MR-term.
Let us show that one of these applicative terms s = F t1 . . . tn tn+1 is such

that F 6= Λ and tn+1 ∈ FV (u0).

26 Azadeh Farzan and Victor Nicolet

Assume all terms s are such that F = Λ. Since Λ : α→ D, there can only be
one argument in the applicative term, so n = 1 and s = Λ t1. If t1 is a variable,
then s is not a term that causes u0 to not be maximally reducible. Since g is a
total function, t1 cannot be a symbolic term: the top symbol would necessarily
be a constructor of α, and there would be some rule Λ p → t ∈ R to reduce
the term, which contradicts the assumption that s is a subterm of a reduced
term. Therefore, t1 is an application of type α, using a different non-terminal
symbol. We have necessarily a term of the form s = F t1 . . . tn tn+1 where
F 6= Λ. Suppose tn+1 is not a variable. Assume that tn+1 is not a maximally
reducible term obeying Prop.4. Then either (1) tn+1 = Λx for some x or (2)
tn+1 = κ(t) for some constructor κ and tuple of terms t. (1) is impossible, a
well-formed PMRS cannot recurse on terms of base type and Λx is of base type.
(2) is impossible, this would contradict the fact that the term if fully reduced:
there is at least one rule pattern-matching the constructor κ. Therefore, either
tn+1 is a term obeying Prop.4 (induction) or tn+1 is a variable. Since reduction
cannot introduce fresh variables, if tn+1 is a variable then tn+1 ∈ FV (u0).

A.3 Properties of Expand and ExpandOnce

First, we define precisely a local boundary of a term.

Definition 6. S is a local boundary of t iff:

– S is an antichain,
– for every bounded term t0 such that t � t0, there exists t′ ∈ S such that
t′ � t0.

– for every t1, t2 ∈ S, {t′|t1 � t′} ∩ {t′|t2 � t′} = ∅.

Proposition 6. The pointwise expansion of t at variable x yields a local bound-
ary of t.

Proof. Let C[] the context such that t = C[x]. The pointwise expansion of t at
x is the set of terms T̂x = {C[κ1(x1)], . . . , C[κn(xn)]} where κ1, . . . , κn are the n
distinct constructors of the type β of x, and xi are n distinct tuples of distinct
variables whose size is the arity of the corresponding constructor, and the type
of each variable is the expected type of the constructor argument. We denote by
x̂ = {κ1(x1), . . . , κn(xn)} the expansions of x.

First, note that T̂x is an antichain: there is no substitution of variables that
can substitute an expansion of x for another expansion of x.

Any term in T̂x is trivially an expansion of t, as the definition name suggests.
For each 1 ≤ i ≤ n the substitution function witnessing this is θi such that
θi(x) = κ(xi) and θi(y) = y for y 6= x. We show that any (well-typed) bounded
expansion of t is either a term of T̂x or an expansion of a term of T̂x. Let a
bounded term t′ be an expansion of t and θ : FV (t) → T (σ,V \ FV (t)) the
substitution function witnessing it. Since t′ is a well-typed term, θ(x) is a term
where the root is one of the constructors κ1, . . . , κn (this is the only possible
construction that yields terms of type β). Remark that θ(x) 6= x, since x is

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 27

assumed to be of type β which is a recursive type, and therefore x cannot appear
in t′. So x is expanded, and there exists x′ ∈ x̂ such that x′ � θ(x). Let i be the
index such that x̂i = κi(xi) � θ(x), and θi be the substitution witnessing this
expansion ordering. Let θ′ defined by θ′(z) = θi(z) for z ∈ xi and θ′(y) = θ(y)
for y /∈ xi. Then θ′T̂xi = t′, i.e t′ is an expansion of t̂xi.

Let t1, t2 ∈ T̂x (t1 6= t2) and t′1 some expansion of t1, t′2 some expansion of
t2. Since t1, t2 are two different terms of T̂x, there is some κi(xi) and κj(xj)
(1 ≤ i, j ≤ n, i 6= j) such that t1 = C[κi(xi)] and t2 = κj(xj). So there exists
contexts C ′1 and C ′2, and tuples of terms s1 and s2 such that t′1 = C ′1[κi(s1)] and
t′2 = C ′2[κj(s2)]. Therefore, t′1 and t′2 cannot be equal, they differ at least in the
subterm rooted at x in the original term t.

Another small lemma guarantees that expanding a term in a local boundary
preserves the local boundary:

Lemma 1. Let t be a symbolic term. Assume S is a local boundary of t, and let
S′ be a local boundary of some t0 ∈ S. Then (S \ t0) ∪ S′ is a local boundary of
t.

Proof. The proof follows from the transitivity of �. Let tb be a bounded term
s.t. t � tb. Since S is a local boundary of t, there is some t′ in S s.t. t′ � tb.
If t′ 6= t0, then t′ is already in (S \ t0) ∪ S′, so tb is an expansion of a term in
that new boundary. If t′ = t0, by definition of S′ the local boundary of t0 (and
t0 � tb) there is a term ts in S′ such that ts � tb. So (S \ t0) ∪ S′ is a local
boundary of t. Since S′ ⊆ {t′|t0 � t} and S′ is a boundary, the third condition
of the local boundary is also satisfied.

A.4 Proof of Proposition 5

Proposition 5. Let t be some symbolic term and T ′, U ′ be the results of the call
to Expand(t). Then T ′ ∪ U ′ is a boundary of the set {t′|t � t′}.

Proof. The proof follows directly from Proposition 6 and Lemma 1. Let u0 be
an unbounded term and T ′, U ′ = Expand(u0). We want to prove that T ′ ∪ U ′
is a local boundary of u0. In the Expand algorithm, at the start of the loop,
T ′∪U ′ = {u0} is trivially a local boundary of u0. Lemma 1 and Prop. 6 guarantee
that at any step of the loop in Expand, the invariant that T ′ ∪U ′ is a boundary
of u0 is maintained.

Proposition 5 guarantees, by construction of T and U from Expand, that
T ∪ U is a boundary during all rounds of the algorithm. We can also state that
T ∪ U is a set of terms such that the expansions of any two terms in the set do
not intersect (a consequence of the third condition of Definition 6).

A.5 Parsimony

Let us define what it means for a term to be parsimonious.

28 Azadeh Farzan and Victor Nicolet

Definition 7. A term t is parsimonious iff there is no t0 � t that is a MR-term.

Intuitively, when a term is parsimonious, there is no simpler term that could
be used to construct a well-formed set of constraints. With Prop. 4 and Propo-
sition 5, we can prove the following proposition.

Proposition 7. Let uc be a parsimonious term picked from U at some step of
the algorithm, and T ′, U ′ = Expand(uc). Then T ′ ∪ U ′ is a set of parsimonious
terms.

Proof. Let uc be a generalization of a counterexample from the algorithm and
T,U the boundary at the step of the algorithm where uc is selected (uC ∈ U).
Note that uc is not a MR-term. Let T ′, U ′ = Expand(uc). We assume that uc
is parsimonious. At each step of the Expand algorithm, new terms are obtained
using the ExpandOnce subroutine. By Propositions 6 and 5, we have the invariant
that in Expand, T ′ ∪ U ′ is a local boundary (Definition 6) of uc, and until the
loop exits T ′ = ∅. The invariant that there is no MR-term t0 such that t0 � t for
some term in U is also maintained; if there was one, it must be a term u such
that uc � u, which is necessarily the result of some ExpandOnce call, and this
term would have been placed in T ′. Therefore, all the u0 terms picked by the
loop are not MR-terms.

Now suppose that after n iterations of the loop in Expand, we obtain a non-
empty set of MR-terms T . Let t0 ∈ T .

First, note that if there is a MR-term t′0 such that t′0 � t0, then necessarily
uC � t′0. This is because (1) we assumed that there is no MR-term t′0 s.t. t′0 � uC
and (2) uC is picked from the boundary T,U in the algorithm, and there is no
term t′ such that t′ � t0 but t′ is not an expansion of uC or t′ � uC . If t′0 and t0
and both are MR-terms, there is at least one variable x in FVr(t

′
0) that has been

replaced by a term tx in t0. That is, if θ is the substitution function such that
θt′0 = t0, then θ(x) = tx where tx 6= x. We can prove that no such x should exist
in t′0 if it is maximally reducible. It x has been expanded in t0, then it should
be expanded in t′0 as well.

Definition 8 (Universe of boundaries). The universe of boundaries B is the
set of all pairs of sets T,U such that T ∪ U is a boundary.

Definition 9. A refinement round of the algorithm is uniquely identified by the
boundary T,U ∈ B, the counterexample xC returned by Verify. We denote by
(T,U, xC) such a refinement round.

The following proposition states that our algorithm is parsimonious: when a
term is added to T , there is no other terms that is less expanded that could have
been added to T .

Theorem 2. [Parsimony] Let us assume (T,U) is a boundary that our algo-
rithm reaches in some round, then (T,U) is optimal in the following two senses:

– for every t ∈ T ∪ U there is no MR-term t′ such that t′ � t.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 29

– there is no non-empty subset T ′ of T and set U ′ such that (T \ T ′)∪U ′ is a
boundary and E(T \ T ′) - E(T).

This theorem states that at any round of our algorithm, (1) the terms in T
cannot be replaced by any less expanded term, and (2) removing any subset of
terms in T that preserves the boundary invariant does not preserve the set of
solutions of the approximation.

Proof. Let us assume that (T,U) ∈ B is a boundary at some round of the
refinement loop. The algorithm maintains at any round that for any term t ∈
T ∪ U , there is no MR-term t′ such that t′ � t. The proof follows directly from
induction on the steps of the algorithm, and Proposition 7 proves the induction
step holds (the induction hypothesis being that uc is a parsimonious term).

Note that if T,U ∈ B, by definition of a boundary, no term in t0 in T or U
can be removed such that T ∪ U \ {t0} is still a boundary. If a term is removed
from the boundary, then the guarantee that all terms are either expansions or
expanded from a term in the boundary is not preserved.

Now suppose that there is a set of MR-terms T ′ ⊆ T , T ′ 6= ∅ and a set of non
maximally reducible terms U ′ such that (T \ T ′) ∪ U ′ is a boundary. Each term
in T has been introduced at some round of the algorithm. Let t′ be some term
in T ′(⊂ T). Let r = (Tr, Ur, xc) the round at which t′ has been introduced, and
T ′r, U

′
r = Expand(uc) where uc ∈ U is the generalization of xc, i.e. uc � xc. By

definition, t′ ∈ T ′r. We know through Proposition 6 that T ′r is a local boundary of
uC(Definition 6). If t′ is removed in T ′r, T

′
r∪U ′r is not a local boundary anymore.

At the level of T , the reparation implied by having removed t′ from T requires
removing T ′r within T and U ′r within U , and adding uc to U . A consequence of
the necessary reparation of the boundary is that the counterexample xc is not
an expansion of some term in T \ T ′. Additionally, any set of terms that have
been added by expanding terms in U ′r also need to be removed. As a result the
spurious solutions of round r and the rounds made possible by the refinement
happening at round r are spurious solutions of E(T \ T ′). Therefore, E(T \ T ′)
has solutions that are not solutions of E(T).

B Extras

B.1 Case Studies

In this section we provide more information about the different categories of
benchmarks chosen in this paper. We give the recursive types, the representation
functions and the recursion skeletons that are common to every benchmark in
each of the categories.

Note that in a given category there might be some variation in the definitions.
Because the function need to be total, the recursive types need to represent all
possible inputs of the function. For example, a traditional definition of lists is
the recursive type a list =Nil | Cons of a * a list, but one might need to
use the recursive type defining lists with at least one element, which can be

30 Azadeh Farzan and Victor Nicolet

defined by a list =Elt of a | Cons of a * a list. For each category we give
the definitions with empty as base case.

Tail Recursive. In this set of benchmarks the input function is a non tail-
recursive function on lists. The type of lists is a list =Nil | Cons of a * a

list. The input function is a function of the form

let rec spec =

function

| Nil -> baseCase

| Cons(hd , tl) -> accum hd (spec tl)

with a given definition for baseCase and accum. The recursion skeleton is the
following function:

let rec rskel = function x -> aux baseCaseTr x

and aux s =

function

| Nil -> s

| Cons(hd , tl) -> rksel (accumTr s hd) tl

where baseCaseTr and accumTr are the unknowns to be synthesized. In this re-
cursion skeleton, all recursive calls (to aux) are in tail position. However, the
transformation from the specification is not trivial.

Combine. The benchmarks in combine use both tail-recursive and non-tail re-
cursive implementations and combine them into a single implementation.

From Trees to Paths. The trees considered in this set of benchmarks is the
set of labelled binary trees, defined by the recursive type a btree =Empty | Node

of a * a btree * a btree. The paths for this particular type of trees is c path

=Top | Zip of sel * c * c btree * c path where sel is a simple sum type sel

= Left | Right. The representation function from (binary tree) paths to binary
trees is:

let rec repr =

function

| Top -> Empty

| Zip(w, val , child , z) -> h val child z w

and aux h val child z =

function

| Left -> Node(val , child , repr z)

| Right -> Node(val , repr z, child)

The target recursion scheme for this set of benchmarks is the following func-
tion with unknowns s0 and joinl, joinr:

let rec rskel =

function

| Top -> s0

| Zip(Left , a, child , z) -> joinl (spec child) (rskel z)

| Zip(Right , a, child , z) -> joinr (spec child) (rskel z)

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 31

Tree Flattening. A plane tree is a tree where each node contains a list of
children a ptree =PNil | PNode of a * (a ptree)list. The following represen-
tation function translates plane trees to labelled binary trees:

let rec repr =

function

| PNil -> Empty

| PNode(a, l) -> Node(a, Empty , f l)

and f =

function

| Nil -> Empty

| Cons(hd , tl) -> Node(0, repr hd , f tl)

In this example a default value 0 is placed in some nodes in order to encode the
geometry of the original tree. In the instance where no appropriate value exists,
one can use an option type and place some elements in the leaves, and none in
the geometry encoding nodes. The recursion skeleton requires synthesizing two
unknown functions j1, j2 and two base case values s1, s2. It is specified as
follows:

let rec rskel =

function

| PNil -> s1

| PNode(a, children) -> j1 a (aux children)

and aux l =

function

| Nil -> s2

| Cons(hd , tl) -> j2 (rskel hd) (aux tl)

There are variations of this recursion skeleton where an accumulator can be used
instead of this direct-style recursion.

Change Tree Traversal. Some functions on trees are more easily written with
a specific traversal. For example, computing the maximal in-order prefix sum of
a tree can be trivially written with an in-prefix traversal of the tree, and similarly
a post-order prefix sum can be computed with a post-order traversal. Our tool
can automatically synthesize the equivalent implementation corresponding to
the divide-and-conquer tree homomorphism.

Parallelizing Functions on Lists. Parallelizing a single-pass function on lists
amounts to transforming a function on lists to a homomorphism on lists built
with the concatenation operator. These lists can be specified with the recursive
type a clist =CNil | Single of a | Concat of a clist * a clist. That is, a
list is either empty, a single element or a concatenation of two lists. The represent
function translate concatenation lists into traditional lists:

let rec repr =

function

| CNil -> Nil

| Single(a) -> Cons(a, Nil)

32 Azadeh Farzan and Victor Nicolet

| Concat(x, y) -> dec y x

and dec l1 =

function

| CNil -> repr l1

| Single(a) -> Cons(a, repr l1)

| Concat(x, y) -> dec (Concat(l1 , y)) x

An interesting feature of this formulation is that the associativity of the con-
catenation operator is encoded by the representation function. The concatena-
tion lists Concat(Single(a), Concat(Single(b), Single(c))) and Concat(Concat

(Single(a), Single(b)), Single(c)) will be translated to the same list Cons(a

,Cons(b, Cons(c, Nil))). When solving the problem, the solver has no explicit
knowledge of this property, yet the synthesized result will reflect the associativity
of the concatenation operator.

The target recursion skeleton is a list homomorphism with unknowns s0, f0

and join:

let rec hom =

function

| CNil -> s0

| Single a -> f0 a

| Concat(x, y) -> join (hom x) (hom y)

Note that the calls hom x and hom y can be performed in parallel.

Lists to Trees* This set of benchmarks does not appear in the main body of
the paper. Table 2 lists three benchmarks that we added to the set to illustrate
an example where the same solution is synthesized for three different represent
functions. In this category of benchmarks, the reference function is a function
from lists to scalar type. For example, one can write the following function for
a given init constant and accum function:

let rec spec =

function

| Nil -> init

| Cons(hd , tl) -> accum hd (spec tl)

The recursion skeleton that needs to be synthesized is a homomorphic on labelled
binary trees:

let rec treehom =

function

| Empty -> s0

| Node (a, l, r) -> join a (treehom l) (treehom r)

The user has a choice of how to implement the representation function that
flattens a labelled binary tree into a list. One can use a pre-order, in-order or
post-order traversal to do so. For example, the following is a valid represent
function:

let rec repr =

function

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 33

| Empty -> Nil

| Node(a,l,r) -> dec Cons(a, repr r) l

and dec li =

function

| Empty -> li

| Node(a, ll , lr) -> dec Cons(a, dec li lr) ll

Remark that the traversal used by the representation function does not matter
if the function to be synthesized is permutation invariant (the accumulator is
commutative). However, the choice of the representation function has an im-
pact on whether Synduce will be able to leave some terms unbounded. The
benchmark search (v3) requires one fewer iteration of the refinement loop than
the other benchmarks because Synduce is able to leave one branch of the in-
put trees unbounded. The representation function, in these cases, is an in-order
traversal. Remark also that the representation function choice has no impact on
the number of refinement steps taken by the symbolic CEGIS algorithm.

B.2 Evaluation of the Concrete CEGIS Algorithm

In the paper, we compare our approach with a baseline implementation. This
baseline implementation is a symbolic counterexample guided inductive synthesis
algorithm.

We compare our two previous implementations to another solution which can
be described as a concrete CEGIS algorithm, in contrast to the symbolic CEGIS
algorithm used as the naive implementation. Table 2 summarizes the experi-
mental results for the same set of benchmarks as the main body of the paper.
The sum of even elements benchmark is an example where concrete CEGIS is
behaving particularly badly. The counterexamples sequence effectively explores
only the unbounded integer domain of the problem, but never the unbounded
recursive dimension. Each program generated is a case distinction on the possible
valuation of lists of size at most two.

It also illustrates the difficulty of expressing such problems with input/output
examples. The mps example, depending on the target recursion scheme, requires
7 to more than 15 input/output counterexamples.

Verification Time In Table 2, we give for each implementation the percentage
of the total running time spent verifying solutions. This number can give an
idea of the syntactic complexity of the solutions; when more time is spent in
the verification oracle than the synthesis oracle, it is a good indication that
the solution is relatively simple. The synthesis solver finds a solution in little
time, and in comparison the verification takes more time. Remark that despite
the simplicity of the recursive types, the number of symbolic terms of a given
depth is large. We use the partial bounding of the terms in Synduce during the
verification, effectively cutting the size of the set of constraints that needs to be
verified.

34 Azadeh Farzan and Victor Nicolet

Table 2. Extended Experimental Results. Three algorithm are compared: the selective
bounding CEGIS in Synduce, symbolic CEGIS and concrete CEGIS. Benchmarks are
grouped by categories introduced in Section 7.1. # indicates the number of refinement
rounds. ver.% indicates the percentage of total time spent verifying solutions. Tlast is
the elapsed time before the last call to the SyGuS solver in the last refinement step
before timeout (‘.‘ indicates that there was no previous round). All times are in seconds.
A ’-’ indicates timeout(> 10 min). Experiments are run on a laptop with 16G memory
and an i7-8750H 6-core CPU at 2.20GHz running Ubuntu 19.10.

Synduce Symbolic CEGIS Concrete CEGIS
Benchmark

time ver. % # time ver. % # time ver. % #
sum 0.03 47.7 2 0.04 54.0 3 0.05 56.6 4
max 0.33 99.6 1 0.34 93.1 2 1.41 23.5 4

max 2 0.25 99.5 1 0.34 93.7 2 2.82 11.0 6
min 0.23 99.4 1 0.33 92.7 2 6.31 5.5 7

min-max 0.85 64.6 3 73.16 0.8 3 - ∼0. 12
max weighted path 0.09 61.7 3 0.07 60.4 3 0.09 64.4 5

sorted in-order 0.01 88.3 1 43.97 0.1 4 88.02 0.1 9
pre-order poly. 16.09 0.1 2 - ∼0. 4 - ∼0. 5

mips 0.29 12.4 2 - ∼0. 4 - ∼0. 8
in-order mts 0.41 8.0 2 - ∼0. 4 - ∼0. 8

post-order mps 132.14 0.9 4 - ∼0. 6 - ∼0. 13
sum 0.07 72.5 2 0.06 69.7 3 2.77 99.0 5

height 0.90 8.9 1 1.24 4.1 5 3.52 48.7 5
max weighted path 0.15 74.6 2 0.12 73.4 3 0.14 73.1 6
max w. path (hom) 0.01 74.8 1 1.69 6.0 5 2.00 5.1 11

leftmost odd 0.01 76.3 1 - ∼0. 4 - ∼0. 4
mips 1.57 25.1 3 - ∼0. 7 - 0.2 15
sum 0.02 48.5 2 0.03 47.8 3 0.03 52.4 3
mts 5.88 0.4 2 575.30 ∼0. 3 - ∼0. 11
mps 1.69 1.3 2 4.82 0.4 3 9.47 0.5 7

mts + sum 9.95 0.2 2 112.57 ∼0. 3 19.77 0.2 6
sum + mts + mps 0.26 18.3 3 - ∼0. 3 - ∼0. 7

sum 0.07 25.4 3 0.08 14.6 2 0.07 16.1 2
product 0.07 16.5 2 0.17 6.8 2 0.15 11.4 3

max of heads 0.21 16.4 2 0.18 18.4 3 0.42 7.8 5
max of lasts 0.21 13.7 2 0.33 6.9 3 0.13 19.8 4

max sibling sum 5.26 0.3 2 2.72 1.0 3 31.11 0.1 6
sum 0.08 83.6 1 0.31 93.5 3 0.31 89.3 3

sum of even elts. 0.10 70.5 1 0.39 89.9 3 - 0.5 170
length 0.07 87.7 1 0.22 90.2 4 - ∼0. 3

last 0.01 50.0 1 0.03 40.7 2 0.04 37.2 2
product 0.07 86.6 1 0.31 93.3 3 0.31 88.8 3

polynomial 0.07 43.2 1 0.71 86.1 5 0.71 87.4 5
hamming 0.10 77.7 1 0.46 92.8 3 53.50 0.9 6

min 0.02 62.9 1 0.08 72.8 2 0.14 50.9 3
is sorted 3.45 0.5 2 3.20 1.2 4 6.01 0.8 6

linear search 0.08 81.4 1 0.35 93.8 3 0.44 83.7 2
line of sight 0.86 9.6 2 213.41 0.1 7 - ∼0. 8

mts 0.10 68.1 1 4.80 98.4 4 103.48 5.3 11
mps 0.09 71.6 1 4.73 98.5 4 259.12 2.3 11

mts and mps combined 0.38 42.0 2 210.84 4.8 6 - ∼0. 9
mss 4.82 12.5 3 - ∼0. 6 - ∼0. 7

count max elements 138.20 ∼0. 1 - ∼0. 3 - ∼0. 7
search 5.53 0.6 3 8.99 0.3 4 6.93 0.4 4

search (v2) 5.53 0.6 3 6.94 0.4 4 8.97 0.3 4
search (v3) 6.13 0.2 2 6.93 0.4 4 6.86 0.4 4

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 35

B.3 Optimizations for Synthesizing Solutions of Recursion-Free
Systems of Equations

In order to make finding a solution easier, we apply the following optimizations
to the systems of equations, independently of the context in which the system
of equations has been generated.

Syntactic Definitions. The system of equations might contain equations that
are syntactic definitions. Those are the equations of the form ξ x1 . . . xn = t
where ξ is an unknown to be synthesized, x1, . . . , xn are n distinct variables
(n ≥ 0) and t is some symbolic term. One can easily notice that this is an
equation that defines the function ξ unequivocally as ξ(x1, . . . , xn) = t. If a
syntactic definition for ξ is found, the unknown ξ is replaced by its definition in
the rest of the equations.

Separating Tuple Components. When the output type of an unknown is a
tuple, each component of the tuple can be separated. We transform an unknown
ξ : A → D1 × . . . × Dn to a set of unknowns ξi : A → Di for each 1 ≤ i ≤ n.
An equation between tuples is also translated to a set of equations between
the components. This optimization significantly reduces the complexity of the
synthesis task when used in combination with the next optimization.

Independent Subsystems. Smaller equations systems with fewer unknowns
are easier to solve. If a subset of unknowns X ⊂ Ξ appears only in a subset
of equations E′ ⊂ E, and no other unknown appears in E′, then the equation
system can be split into the equations E′ with unknowns X, and the equations
E \E′ with unknowns Ξ \X. A system of equations can be split recursively into
a set of subsystems that can be solved independently.

Initialization A better initialization strategy could save some early calls that
are bound to be unsuccessful. If an equation system does not constrain one of
the unknowns, then there is very little chance that an arbitrary solution for this
unknown will be correct.

Ideally, an initial set of terms S should guarantee that each unknown appears
at least in one equation of the approximation. For a given recursion skeleton
S[Ξ], such a set S can be produced by expanding a variable of type θ into a
set of terms, and then recursively expand those terms until the set satisfies the
following condition: for every unknown ξ, there is a term t ∈ S such that ξ
appears in S[Ξ](t).

S as described above may contain terms that are not maximally reducible.
Our algorithm initializes T,U by calling Expand to expand every term in S to
at least one maximally reducible term.

Proposition 8. Let S be the set described above, and T a set of terms such that
for all t0 ∈ S there exists a term t in T that is an expansion of t0 (i.e t0 � t).
Then for each ξ ∈ Ξ there is at least one equation in E(T) that constrains ξ.

36 Azadeh Farzan and Victor Nicolet

By starting from such a set S and expanding the terms in it, it is guaran-
teed that at any step of the algorithm, the approximation contains at least one
equation for each unknown.

Evaluation of the optimizations In Table 3,we evaluate the different op-
timizations with the symbolic CEGIS algorithm, and the selective bounding
algorithm implemented in Synduce. The optimizations proposed improve the
running times of the algorithm overall.

– Initialization The column #i indicates the number of rounds required with-
out the optimized initialization, and the column -ini the synthesis time.
Note that this optimization is not applicable to the symbolic CEGIS algo-
rithm, since is it tied to searching terms using and the Expand function which
performs partial bounding. In general, the synthesis time is marginally im-
proved by this optimization. Using the optimization saves at least one round
of refinement.

– Separating Tuple Components and Independent Subsystems The column -

sys indicate when the optimization is tuned off. The use of the separating
tuple components and splitting into subsystems is, in some examples, making
running time worse. However, there is no instance where a benchmark would
time out because the optimization is turned on. Without the optimization, 9
out 46 benchmarks time out in Synduce, and 2 out of 37 passing benchmark
time out in symbolic CEGIS.

– Syntactic Definitions The columns - stx indicate the synthesis times when
the optimization is turned off. Without the optimization, 5 benchmarks out
of 46 time out in Synduce, and 10 out of 37 passing benchmarks time out
in symbolic CEGIS.

The last column of each algorithm reports the synthesis time when all op-
timizations are turned off. In Synduce, this results in 18 benchmarks out of
46 to time out. In the symbolic CEGIS algorithm, 10 out of 37 passing bench-
marks time out. We did not evaluate the effect of using the optimizations in the
concrete CEGIS algorithm. The only optimization that is applicable is the tuple
component separation and independent subsystems. There is no syntactic defini-
tions in the concrete algorithm, since all constraints are expressed over concrete
inputs.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 37

Table 3. Optimization Evaluation Results: We evaluate Synduce and symbolic CEGIS
with some optimizations turned off. - ini indicates that optimized initialized is off,
- sys indicates tuple components and independent subsystems is turned off, and stx

that syntactic definitions are turned off. on (and off) indicate that all optimizations are
turned on (resp. off). Benchmarks are grouped by categories introduced in Section 7.1.
indicates the number of refinement rounds for the given algorithm, and #i indicate
the number of refinement rounds without the optimized initialization. All times are in
seconds. A ’-’ indicates timeout(> 10 min). Experiments are run on a laptop with 16G
memory and an i7-8750H 6-core CPU at 2.20GHz running Ubuntu 19.10.

Synduce Symbolic CEGIS
Benchmark

on #i -ini -sys -stx off # on -sys -stx off

sum 2 0.03 3 0.04 0.03 0.05 15.07 3 0.04 0.04 3.76 3.80
max 1 0.33 2 0.35 0.33 0.30 0.54 2 0.34 0.34 1.23 1.22

max 2 1 0.25 2 0.25 0.25 0.30 0.36 2 0.34 0.34 1.37 1.36
min 1 0.23 2 0.24 0.23 0.29 0.54 2 0.33 0.32 2.06 2.07

min-max 3 0.85 4 0.91 - 0.87 15.96 3 73.16 - - -
max weighted path 3 0.09 3 0.09 0.09 0.11 1.01 3 0.07 0.07 28.22 28.69

sorted in-order 1 0.01 1 0.01 0.01 42.14 41.52 4 43.97 44.10 44.04 43.98
pre-order poly. 2 16.09 3 15.98 - 16.03 - 4 - - - -

mips 2 0.29 3 0.31 - 0.33 - 4 - - - -
in-order mts 2 0.41 3 0.43 - 0.48 - 4 - - - -

post-order mps 4 132.14 5 131.49 - 133.88 - 6 - - - -
sum 2 0.07 3 0.08 0.09 0.11 1.16 3 0.06 0.06 54.25 53.75

height 1 0.90 2 0.95 58.06 0.94 58.19 5 1.24 18.04 1.26 18.39
max weighted path 2 0.15 3 0.14 0.20 0.20 0.20 3 0.12 0.12 0.12 0.12
max w. path (hom) 1 0.01 4 0.22 0.01 0.03 0.55 5 1.69 1.42 1.71 1.42

leftmost odd 1 0.01 2 - 0.01 - - 4 - - - -
mips 3 1.57 4 1.59 - 2.17 - 7 - - - -
sum 2 0.02 3 0.03 0.03 0.48 0.48 3 0.03 0.03 0.37 0.45
mts 2 5.88 3 5.84 - 5.93 - 3 575.30 115.58 565.67 118.10
mps 2 1.69 3 1.65 0.31 - - 3 4.82 0.34 - -

mts + sum 2 9.95 3 10.07 4.72 - - 3 112.57 5.42 - -
sum + mts + mps 3 0.26 4 0.28 - 0.32 - 3 - - - -

sum 3 0.07 2 0.08 0.07 0.07 0.07 2 0.08 0.07 0.08 0.07
product 2 0.07 3 0.34 0.07 0.07 0.07 2 0.17 0.16 0.17 0.16

max of heads 2 0.21 3 0.12 0.23 0.47 0.49 3 0.18 0.20 0.45 0.46
max of lasts 2 0.21 3 0.27 0.23 0.71 0.68 3 0.33 0.34 0.54 0.50

max sibling sum 2 5.26 3 5.31 5.46 39.42 37.64 3 2.72 2.84 18.63 19.22
sum 1 0.08 2 0.08 0.07 0.08 0.41 3 0.31 0.30 2.53 2.84

sum of even elts. 1 0.10 2 0.11 0.10 - - 3 0.39 0.39 - -
length 1 0.07 2 0.08 0.07 0.08 1.63 4 0.22 0.23 - -

last 1 0.01 2 0.03 0.01 0.02 0.02 2 0.03 0.03 0.04 0.03
product 1 0.07 2 0.08 0.07 0.09 0.19 3 0.31 0.31 1.68 1.68

polynomial 1 0.07 2 0.08 7.71 0.08 - 5 0.71 14.17 - -
hamming 1 0.10 2 0.11 0.10 3.12 - 3 0.46 0.46 - -

min 1 0.02 2 0.03 0.02 0.03 0.04 2 0.08 0.11 0.15 0.17
is sorted 2 3.45 3 3.34 3.41 3.44 3.46 4 3.20 3.12 3.13 3.12

linear search 1 0.08 2 0.09 0.08 - - 3 0.35 0.36 - -
line of sight 2 0.86 3 0.90 6.93 0.84 4.12 7 213.41 7.67 - -

mts 1 0.10 2 0.11 1.51 0.12 36.35 4 4.80 6.18 - -
mps 1 0.09 2 0.11 1.36 0.11 - 4 4.73 6.04 - -

mts and mps combined 2 0.38 3 0.40 - 0.44 - 6 210.84 - - -
mss 3 4.82 4 4.87 - 5.05 - 6 - - - -

count max elements 1 138.20 2 136.71 - 139.43 - 3 - - - -
search 3 5.53 4 5.53 5.54 5.53 4.14 4 8.99 9.01 12.47 12.43

search (v2) 3 5.53 4 5.53 5.52 5.54 4.15 4 6.94 6.91 9.05 9.21
search (v3) 2 6.13 3 6.18 6.19 6.21 6.61 4 6.93 6.93 9.04 9.02

	Counterexample-Guided Partial Bounding for Recursive Function Synthesis

