
Program Synthesis From Partial Traces

MARGARIDA FERREIRA, Carnegie Mellon University, USA and INESC-ID/IST, Portugal
VICTOR NICOLET, JOEY DODDS, and DANIEL KROENING, Amazon, USA

We present the first technique to synthesize programs that compose side-effecting functions, pure functions,
and control flow, from partial traces containing records of only the side-effecting functions. This technique can
be applied to synthesize API composing scripts from logs of calls made to those APIs, or a script from traces of
system calls made by a workload, for example. All of the provided traces are positive examples, meaning that
they describe desired behavior. Our approach does not require negative examples. Instead, it generalizes over
the examples and uses cost metrics to prevent over-generalization. Because the problem is too complex for
traditional monolithic program synthesis techniques, we propose a new combination of optimizing rewrites
and syntax-guided program synthesis. The resulting program is correct by construction, so its output will
always be able to reproduce the input traces. We evaluate the quality of the programs synthesized when
considering various optimization metrics and the synthesizer’s efficiency on real-world benchmarks. The
results show that our approach can generate useful real-world programs.

CCS Concepts: • Theory of computation→ Automated reasoning; Logic and verification.

Additional Key Words and Phrases: Program synthesis

ACM Reference Format:
Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening. 2025. Program Synthesis From Partial
Traces. Proc. ACM Program. Lang. 9, PLDI (June 2025), 46 pages. https://doi.org/10.1145/3729316

1 Introduction

Program synthesis is for lazy people. The promise of program synthesis is that a user writes a
simple specification and gets a complex program. If specifications are complex to write or synthesis
tools are hard to apply, users will prefer to write the program directly. The best specification is one
they already have with no changes needed. Unfortunately (for synthesis tool writers), these specs
often take the form of traces of external side effects. These traces may be sequences of messages
exchanged between networked servers, logs of calls made to an Application Programming Interface
(API), or traces of system calls made by a workload. Program synthesis from traces can be widely
applied across different tasks; there are many instances of this approach in Programming-By-
Demonstration (PBD) work [11, 17, 21, 33], but all of this work is either limited to pure functional
examples, simple trace replay, or assumes no computation occurs between effects visible in traces.
Real-world traces are an incomplete view of a task: function calls with no side effects may

not be recorded. A program a=F(); b=h(a); return G(b) where only the calls to F and G are
logged may produce traces F()=0 :: G("id-0")=true and F()=42 :: G("id-42")=false, with
no occurrence of h. These hidden function calls not present in the traces are a significant challenge
for trace-guided synthesis. In our example, the synthesizer infers from the data that there is a
non-visible function that transforms 0 into "id-0" and 42 into "id-42". These traces come from
external recordings of program behavior. For example, the administrator of a cloud deployment

Authors’ Contact Information: Margarida Ferreira, margarida@cmu.edu, Carnegie Mellon University, Pittsburgh, USA and
INESC-ID/IST, Lisbon, Portugal; Victor Nicolet, victornl@amazon.com; Joey Dodds, jldodds@amazon.com; Daniel Kroening,
dkr@amazon.com, Amazon, Seattle, Washington, USA.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART
https://doi.org/10.1145/3729316

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-1170-5124
HTTPS://ORCID.ORG/0000-0002-3743-7498
HTTPS://ORCID.ORG/0009-0004-1534-6968
HTTPS://ORCID.ORG/0000-0002-6681-5283
https://doi.org/10.1145/3729316
https://orcid.org/0000-0002-1170-5124
https://orcid.org/0000-0002-3743-7498
https://orcid.org/0009-0004-1534-6968
https://orcid.org/0000-0002-6681-5283
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3729316

2 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Input traces Initial program

Synthesis
solver

Program rewriting
rewrite rules + strategy

Optimize for user-defined metric Final program

Fig. 1. Overview of our synthesis approach.

might repeatedly follow a sequence of steps to create a data store and then attach an access policy
to that data store. For convenience, they create a policy name by appending the string "policy" to
an ID generated by the creation of the data store. The log of these actions kept on the cloud will
contain the creation of the data store, the policy, and the connection between the two. It will not
contain the hidden function where the administrator bases the role name on the store’s metadata.
To help automate such repetitive tasks, we propose a new synthesis technique, Syren. Syren

is the first approach to synthesize programs from partial traces. It can infer both control flow
and non-trivial hidden pure function calls with no additional input from the user. We combine
optimizing program rewrites of an initial trivial solution with calls to a syntax-guided synthesizer
(SyGuS) with input-output examples as specifications. Synthesis from input-output examples, also
known as Programming-By-Example (PBE), has a long history of research and enables the synthesis
of nontrivial functions. In Syren, we rely on a PBE synthesizer to synthesize hidden functions
without additional input from the user. These hidden functions, in turn, let us perform further
computation so that the rewrites can expose more intricate relations between data.

In example- and trace-based synthesis, we can assume the existence of a hidden target program,
the programwith the exact desired behavior. In the cloud administrator example above, the complete
target program exists only in the administrator’s mind. We can describe the behavior of a program
as the set of traces that result from its execution on any possible input. When the synthesis
specification is a set of traces, there is a trivial solution to the synthesis problem—the program
that exactly reproduces the input traces. This trivial solution, though correct by construction (in
the sense that it satisfies the specification), is likely not the target program that the user desires.
The user probably wants a program that generalizes the provided traces. For example, our cloud
administrator does not want a program that can reproduce all of the data store names they have
used in the past, they want a program that takes a data store name as a parameter, allowing them
to provide important information like the name, while saving them many repetitive clicks on
a web interface. The trivially correct program is a lower bound on the behavior of all possible
correct programs because it produces the minimal set of traces to be considered correct. The target
program, on the other hand, is an upper bound of the desired behaviors—it would provide us with
all the possible traces that are considered correct, but behaviors not exhibited by the target are
undesirable. Since we do not have access to the target program, we need another way to quantify
as accurately as possible how close to the target behavior a program in the space is. In other words,
we need a cost function to efficiently traverse the program space.

Besides generalizing to traces beyond those observed (allowing more behavior), we considered
readability when building Syren’s cost functions. Like other synthesis works before us, we generally
follow Occam’s razor principle and favor shorter programs to achieve both goals. We evaluate
Syren using two different cost functions we built, but our approach is agnostic to the cost function;
a user can write different cost functions for Syren if they choose to optimize for something else.
For example, a user might specify that a specific input to a given method call must be generalized,
that they want to minimize the syntactic statements in the program, or a combination of both.

Figure 1 summarizes our approach: an initial set of traces is provided, under the assumption that
this set describes a task to be performed. We use that set of traces to construct an initial program.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 3

The core of our technique is the rewriting process guided by a user-defined programmetric (the cost
function) that may use an underlying syntax-guided synthesizer to generate some of the program’s
components. We present Syren’s rewrite rules and how we use the synthesizer in §5.

While our synthesis problem could be encoded as an optimization Satisfiability Modulo Theories
(SMT) problem or as a SyGuS problem, the large search space prevents off-the-shelf state-of-the-art
solvers from solving it. In Syren, we efficiently traverse the search space by combining SyGuS with
program rewriting. We start our search by building a trivial program, a lower bound on program
behavior that is correct by construction. Then, we progressively rewrite it as long as we can decrease
a cost function, generalizing the program and adding desired behavior, while provably maintaining
correctness. Program rewriting is a natural approach when it comes to optimizing programs for a
given cost. For example, compiler optimization and superoptimization [22, 23, 31, 36] uses rewrites
to improve the performance of programs across various dimensions. A challenge to consider
when developing a rewrite system is that an unsound rewrite can lead to incorrect programs. To
reason about the correctness of our solution, we formally define a domain-specific language and
a correctness statement that allow us to prove our rewrite rules correct w.r.t. the language and
statement. The final result is guaranteed to be correct and is optimized for the user-defined metric.

To show the practical applicability of Syren, we implemented the algorithm and evaluated it on
benchmarks gathered from cloud automation, filesystemmanipulation, and document edition scripts.
The 54 benchmarks were collected from custom tasks, existing AWS Automation Runbooks [3],
Blink Automations [7] and related work [18]. We show that our approach generates scripts that
accurately perform the task intended by the user for many tasks. This includes tasks with conditional
control flow, loops, and hidden function calls between visible calls. We experiment with different
strategies to apply rewrite rules and various metrics to optimize the final synthesized program.
This shows that our approach is flexible and adaptable to different user requirements.

In summary, we make the following contributions:
• We describe a synthesis problem where the specification is a set of traces containing vis-
ible function calls, and the program to synthesize must perform those function calls and
additionally implement hidden function calls and control flow.

• We implement Syren, using a new approach that combines optimizing rewrites with tradi-
tional input-output guided program synthesis.

• We evaluate Syren on a set of benchmarks built from AWS automation runbooks, previous
work on API synthesis, and publicly available libraries.

2 From Partial Traces to Programs

We start by illustrating one execution of our synthesis procedure. In this example, we synthesize a
cloud management script that shuts down computing instances. The specification is a set of traces
built from logs collected by the cloud provider (in this case, AWS [4], one of the largest cloud
providers) as the user performed the desired task manually a few times using a visual interface.
The logs contain calls to the AWS API. For our synthesizer, the API calls are visible functions in our
program, whereas the data transformations with input and output data used for these API calls will
be hidden functions.

Motivating Example. An administrator might stop computing instances using the AWS console
(shown in Figure 2a) by:

(1) selecting the instances they want to stop,
(2) clicking “Instance state”, and
(3) selecting “Stop instance” from the options in the drop-down menu that appears.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

4 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

(a) Stopping instances in the AWS console (b) The resulting log showing API calls

Fig. 2. Performing and monitoring actions on the AWS console

1 𝜆 instanceId.
2 let ids = list(instanceId)
3 let _ = ec2.StopInstances(instanceIds=ids, force=false)
4 let s = ec2.DescribeInstanceStatus(instanceIds=ids, includeAllInstances=true)
5 let status = extractInstanceStatus(s)
6 if status != "stopped" { let _ = ec2.StopInstances(instanceIds=ids, force=true) }
7 where
8 extractInstanceStatus := $.InstanceStatuses[0].InstanceState.Name

Fig. 3. Example of a program that stops an EC2 instance.

Clicks on the visual interface trigger calls to a cloud API, in this case, from the ec2 service. A
program could accomplish the same task by making the exact same API calls.
The program in Figure 3 automates a task slightly more complex than the 3 steps described

before. To perform this more complex task in the visual interface, a user would have to, after the
previous steps:
(4) click “refresh” to view the current status for their computing instances,
(a) if the instance status is “stopped”, then terminate the task here;
(b) otherwise once again click “Instance state”, and

(5) select “Force stop instance” from the drop-down menu.
Figure 2b shows the logs created in AWS by these actions. We use these logs, which from now on

we will refer to as traces, as a specification for the synthesis problem. The synthesized program can
be used to automate the task, reducing a many-click, repetitive, and error-prone task to a single
press of a button. Our approach ultimately generates a program similar to the one shown in Figure 3
from the traces. We now give an overview of how our approach solves this specific problem.

Synthesis algorithm overview. We start with a set of traces, each containing the API calls made
while carrying out a task. The following two traces exemplify the task described previously:
Trace #1 :=
(ec2.StopInstances("InstanceIds": ["i-09dc8"], "force": false), { ... })
(ec2.DescribeInstanceStatus("InstanceIds":["i-09dc8"]),

{"Statuses": [{"InstanceState": {"Code":64, "Name":"stopping"}, ...}], ... })
(ec2.StopInstances("InstanceIds": ["i-09dc8"], "force": true), { ... })

Trace #2 :=
(ec2.StopInstances("InstanceIds": ["i-07f34"], "force": false), { ... })
(ec2.DescribeInstanceStatus("InstanceIds": ["i-07f34"]),

{"Statuses": [{"InstanceState": {"Code":80, "Name":"stopped"}, ...}], ...})

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 5

Each trace is a sequence of pairs, and each pair represents an API call: the first element shows
the API method name and its inputs, and the second shows the response to that API call. Both
example traces start with two calls to the API methods, ec2.StopInstances with the parame-
ter force set to false, and ec2.DescribeInstancesStatus. In trace #1, the output of the call to
ec2.DescribeInstancesStatus does not show the current status as "stopped", so we see a second
call to ec2.StopInstances with force set to true. The call to ec2.DescribeInstancesStatus
shows the current status as "stopped" in trace #2, so no further calls are recorded.

The first step in our synthesis pipeline, as shown in Figure 1, is to build an initial program that
provably generates all the input traces for some initial global state. We do this by branching the
execution on the value of a fresh integer variable, br, and replaying each trace on a different branch.
For our running example with two traces, we generate the following initial program:
1 𝜆 br
2 if br == 1 {
3 let x_1_1 = ec2.StopInstances(instanceIds=["i-09dc8"], force=false)
4 let x_1_2 = ec2.DescribeInstanceStatus(instanceIds=["i-09dc8"])
5 } else {
6 let x_2_1 = ec2.StopInstances(instanceIds=["i-07f34"], force=false)
7 let x_2_2 = ec2.DescribeInstanceStatus(instanceIds=["i-07f34"])
8 }

Our approach progressively transforms the program by applying rewrite rules that decrease an
optimization metric. In this example, we use a metric that measures the syntactic complexity of the
program: we add 10 for each statement, 1 for each parameter, and 1 for each usage of br, which is a
synthetic variable that should only be used by the initial program. Initially, the program has cost
62. The first rewrite applied to the program pulls the first call to ec2.StopInstances out of the
if-statement and replaces its arguments, which were constants, with a ternary expression. A second
application of the same rewrite rule extracts the call to ec2.DescribeInstanceStatus. Each rule
reduces the cost by 9, eliminating one statement but introducing one usage of br. After applying
these two rules, the intermediate program has cost 44:
1 𝜆 br
2 let x_1_1 = ec2.StopInstances(instanceIds=(br==1)?["i-09dc8"]:["i-07f34"], force=false)
3 let x_1_2 = ec2.DescribeInstanceStatus(instanceIds=(br==1)?["i-09dc8"]:["i-07f34"])
4 if br == 1 { let x_1_3 = ec2.StopInstances(instanceIds=["i-09dc8"], force=true) }

To eliminate usages of br in the ternary expressions, we need to replace the conditional expres-
sion br==1 with another expression that evaluates to the same value but does not use br. There
are two ways to achieve this: either introduce a new input parameter that takes the value of the
expression, or synthesize a function that will eventually evaluate to the conditional expression
value. To synthesize a (nonconstant) function, Syren considers as potential inputs all variables
bound in the scope of the expression being replaced. In the first appearance of the expression
(br==1)?["i-09dc8"]:["i-07f34"], there are no variables bound in the scope that could be used
as input to a data transformation. So, we have no choice but to introduce a new input parameter,
i_1. Syren replaces all usages of the original expression with i_1. Within the conditional branches,
Syren also replaces the usages of the value the expression evaluates to (considering the conditional).
This results in the following program, with cost 43:
1 𝜆 br, i_1
2 let x_1_1 = ec2.StopInstances(instanceIds=i_1, force=false)
3 let x_1_2 = ec2.DescribeInstanceStatus(instanceIds=i_1)
4 if br == 1 { let x_1_3 = ec2.StopInstances(instanceIds=i_1, force=true) }

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

6 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

The final rewrite for this example replaces the last conditional that depends on br with the
output of a new data transformation 𝜙 over all variables in scope. After this last rewrite rule, the
synthesized program is parametric on an implementation of that data transformation:
1 Λ 𝜙 . 𝜆 i_1
2 let x_1_1 = ec2.StopInstances(instanceIds=i_1, force=false)
3 let x_1_2 = ec2.DescribeInstanceStatus(instanceIds=i_1)
4 let c = 𝜙(i_1, x_1_1, x_1_2)
5 if c { let x_1_3 = ec2.StopInstances(instanceIds=i_1, force=true) }

This rewrite is valid only if we can provide an implementation f for 𝜙 that ensures the program can
reproduce the input traces. During the rewrite process, we maintain a mapping from the identifiers
in the program to corresponding values in the traces. Then, we use these mappings to compute a
set of input-output constraints that f must satisfy. For the traces and program in this example, we
can extract the following two input-output pairs for the desired implementation f:

f(["i-09dc8"], {"StoppingInstances": [...], "ResponseMetadata": {...}},
{"Statuses":[{"InstanceState":{"Code":64, "Name":"stopping"},...}],...}) = true for trace 𝜏1,

f(["i-07f34"], {"StoppingInstances": [...], "ResponseMetadata": {...}},
{"Statuses":[{"InstanceState":{"Code":80, "Name":"stopped"},...}],...}) = false for trace 𝜏2.

We encode the problem into a syntax-guided synthesis solver to generate a solution, which yields:1
f := (i_1, x_1_1, x_1_2) -> x_1_2.InstancesStatuses[0].InstanceState.Name != "stopped".
Substituting 𝜙 for f yields a program that is correct by construction, with a minimal cost of 41.
This final program is syntactically equivalent to the one in Figure 3.

3 Background and Definitions

In this section, we formally introduce concepts necessary to explain our approach to synthesizing
scripts that compose visible side-effecting function calls with conditionals, loops, and (hidden) pure
function calls. In §3.1, we define the domain-specific language (DSL) syntax of our synthesized
programs. This DSL is an intermediate representation that we can easily convert to most common
scripting languages. Next, in §3.2, we define program traces, which we use as an input specification
for synthesis. Finally, in §3.3, we define the semantics of our language, which relates a program to
input and output states, as well as to traces. These semantics allow us to prove properties about the
manipulation of the DSL to prove our approach correct.

3.1 Core Language Syntax

Figure 4 presents the syntax of our core DSL. A program P is a function with input variables2

𝑥 and a set of hidden functions 𝑓 := F . The body of the program is an instruction list I, either
empty (𝜖) or with statements. A statement S can be a simple binding, a conditional, a loop, or the
instruction that marks the end of the script. A binding let 𝑥 = 𝑒1 𝑠2 binds 𝑒1 to 𝑥 in 𝑠2. Conditionals
if 𝑏 {𝑠1} else {𝑠2} 𝑠3 execute 𝑠1 if 𝑏 is true, otherwise 𝑠2, and then 𝑠3. Our language has two forms
of loops. retry 𝑠 until𝑏 (retry until) executes the instructions in 𝑠 at least once, until 𝑏 is true, or
some predefined maximum number of retries is reached. for 𝑥 ∈ 𝐿 {𝑠} iterates through the list 𝐿,
binding 𝑥 to each element and executing 𝑠 .

1In practice, we need at least one more trace and its respective input/output example to synthesize this so-
lution. If we consider only the two example traces shown, a simpler implementation is synthesized for f:
f := (i_1, x_1_1, x_1_2) -> i_1 == ["i-09dc8"].
2We write 𝑥 to denote zero or more occurrences of 𝑥 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 7

P F 𝜆𝑥.I where 𝑓 := F Program
I F 𝜖 | S I Instructions
S F let 𝑥 = E Pure binding

| if B {I} else {I} Conditional
| retry {I} until {B} Retry until
| for 𝑥 ∈ 𝐿 {S} Foreach loop
| return Return

E F A(𝑥) Visible function call
| 𝑓 (𝑥) Hidden function call
| B ? E : E Ternary expression

B F ⊤ | ⊥ | B ∨ B | B ∧ B | ¬B Predicates
| 𝑥 = C Value check
| 𝑥 (≥ |> | ≤ |<)𝑦 Value comparison

F F ?? Pure Function
C F 𝑠 ∈ string | 𝑛 ∈ Z | 𝑏 ∈ { true, false} Constants

Fig. 4. Core scripting language.

Expressions E can be visible or hidden function calls. A visible function call A(𝑥) is a call to
some externally defined function A with arguments 𝑥 , and a hidden call 𝑓 (𝑥) is a call to a pure
function 𝑓 whose implementation F is defined in the program. Visible functions can have side
effects on the outside world, changing the results of future calls. However, they do not change the
local state of the DSL execution. The hidden functions are pure, and their specific syntax depends
on the chosen domain.
We clearly separate pure function implementations F from the rest of the program for two

reasons: to simplify reasoning about variable usage and whole-program rewrites, and to highlight
the fact that our DSL is agnostic of the hidden functions domain. In our implementation of Syren,
we consider a minimal language of hidden functions, which includes a JSONPath as well as other
basic operations over strings, numbers, and Booleans. However our approach can be generalized to
any other language for hidden functions, as long as expressions in that language can be synthesized.

Example 3.1. The script in Figure 3 is an example of a script written in our DSL. The script takes
a single input, instanceIDs and defines one data operation extractInstanceStatus. The visible
functions are the API methods StopInstances (called twice), and DescribeInstanceStatus.

3.2 Program traces

Our synthesis starts from observable traces that can be produced by the program’s execution. The
observable traces contain only records of the visible function calls made by the program and their
results; the hidden function calls do not appear in traces . Formally, a trace is a (possibly empty)
finite sequence of records of all visible calls that the run of the program makes:

𝜏 := ⟨⟩ | (A(𝑣), 𝑒) :: 𝜏 (traces),
where ⟨⟩ is the empty trace, operator • performs concatenation, and ⟨⟩ • 𝜏 = 𝜏 • ⟨⟩ = 𝜏 for any
trace 𝜏 . Each record is a pair (A(𝑣), 𝑒), where the first element states the name of the function A
and the inputs to the call 𝑣 ; the second element, 𝑒 , is the response to the call. 𝑒 is an expression in
the same language as the hidden functions.

3.3 DSL Semantics

Next, we define the semantics of our language as the relation ⇒, presented in Figure 5. The
relation⇒ maps a pair of a program body and state to a triple of local state, trace and continuation
token. In our DSL semantics, we refer to two different notions of state. The local state, 𝜎 , stores
the bindings of every variable assigned in the program at a given point. The global state, 𝐺 ,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

8 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Seq
(𝑠, 𝜎) ⇒ (𝜎 ′, 𝜏, cont) (𝑆 ′, 𝜎 ′) ⇒ (𝜎 ′′, 𝜏 ′, 𝑐𝑟)

(𝑠 𝑆 ′, 𝜎) ⇒ (𝜎 ′′, 𝜏 • 𝜏 ′, 𝑐𝑟)

Seq-S-Term
(𝑠, 𝜎) ⇒ (𝜎 ′, 𝜏,)

(𝑠 𝑆 ′, 𝜎) ⇒ (𝜎 ′, 𝜏,)

Ret

(return, 𝜎) ⇒ (𝜎, ⟨⟩,)

Emp

(𝜖, 𝜎) ⇒ (𝜎, ⟨⟩, cont)

Ite-⊤
𝜎 |= 𝑏 (𝑆⊤, 𝜎) ⇒ (𝜎 ′, 𝜏, 𝑐𝑟)

(if 𝑏 {𝑆⊤} else {𝑆⊥}, 𝜎) ⇒ (𝜎 ′, 𝜏, 𝑐𝑟)

Ite-⊥
𝜎 ̸ |= 𝑏 (𝑆⊥, 𝜎) ⇒ (𝜎 ′′, 𝜏 ′, 𝑐𝑟)

(if 𝑏 {𝑆⊤} else {𝑆⊥}, 𝜎) ⇒ (𝜎 ′′, 𝜏 ′, 𝑐𝑟)

Retry-Until-Continue
(𝑆, 𝜎) ⇒ (𝜎 ′, 𝜏 ′, 𝑐𝑟) 𝜎 ′ ̸ |= 𝑏 ∧ #𝜄 < 𝐾 retry {𝑆 } until {𝑏}, 𝜎 ′ [#𝜄 → #𝜄 + 1]) ⇒ (𝜎 ′′, 𝜏 ′′, 𝑐𝑟)

(#𝜄retry {𝑆 } until {𝑏}, 𝜎) ⇒ (𝜎 ′′, 𝜏 ′ • 𝜏 ′′, 𝑐𝑟)

Retry-Until-Stop
(𝑆, 𝜎) ⇒ (𝜎 ′, 𝜏 ′, 𝑐𝑟) 𝜎 ′ |= 𝑏 ∨ #𝜄 ≥ 𝐾

(#𝜄retry {𝑆 } until {𝑏}, 𝜎) ⇒ (𝜎 ′ [#𝜄 → 0], 𝜏 ′, 𝑐𝑟)

Retry-S-Term
(𝑆, 𝜎) ⇒ (𝜎 ′, 𝜏 ′,)

(#𝜄retry {𝑆 } until {𝑏}, 𝜎) ⇒ (𝜎 ′, 𝜏 ′,)

For-Continue
(𝑆, 𝜎 [𝑥 → 𝐿[#𝜄]]) ⇒ (𝜎 ′, 𝜏 ′, 𝑐𝑟) 𝜎 ′ |= #𝜄 < |𝐿 | (#𝜄for 𝑥 ∈ 𝐿 {𝑆 }, 𝜎 ′ [#𝜄 → #𝜄 + 1]) ⇒ (𝜎 ′′, 𝜏 ′′, 𝑐𝑟)

(#𝜄for 𝑥 ∈ 𝐿 {𝑆 }, 𝜎) ⇒ (𝜎 ′′, 𝜏 ′ • 𝜏 ′′, 𝑐𝑟)

For-Stop
(𝑆, 𝜎) ⇒ (𝜎 ′, 𝜏 ′, 𝑐𝑟) 𝜎 ′#𝜄 ≥ |𝐿 |

(#𝜄for 𝑥 ∈ 𝐿 {𝑆 }, 𝜎) ⇒ (𝜎 ′ [#𝜄 → 0], 𝜏 ′, 𝑐𝑟)

For-S-Term
(𝑆, 𝜎) ⇒ (𝜎 ′, 𝜏 ′,)

(#𝜄for 𝑥 ∈ 𝐿 {𝑆 }, 𝜎) ⇒ (𝜎 ′, 𝜏 ′,)

Hidden
𝜎 |= 𝑓 := F ∧ ∃𝑒 · F (𝑦) = 𝑒

(let 𝑥 = 𝑓 (𝑦), 𝜎) ⇒ (𝜎 [𝑥 → 𝑒], ⟨⟩, cont)

Visible
𝜎 |= ∃𝑣 · 𝑦 = 𝑣 A(𝐺, 𝑣) ↓ 𝑒

(let 𝑥 = A(𝑦), 𝜎) ⇒ (𝜎 [𝑥 → 𝑒], (A(𝐺, 𝑣), 𝑒), cont)

Fig. 5. Big-step semantics

represents external resources accessed by the visible functions in the trace. The notion of global
state is necessary because visible functions are not pure functions of their inputs; depending on the
resources they access, two calls to the same function with the same inputs might return different
outputs. The continuation token is either cont, indicating that evaluation must continue, or ,
indicating that the evaluation must stop.

The rule Seq specifies how a statement 𝑠 followed by instructions 𝑆 ′ is evaluated sequentially and
traces are concatenated. The rule Seq-S-Term handles the case where the first statement terminates
the evaluation of the program. Ret states that the statement return always terminates early with
an empty trace. Emp generates an empty trace, does not change the local state, and always continues
evaluation. In Ite-⊤ and Ite-⊥ for conditionals, either the branch with instructions 𝑆⊥ or 𝑆⊤ are
evaluated depending on whether the local state entails 𝑏 or not. The continuation or termination
token 𝑐𝑟 of the if-then-else is the same as the token in the evaluation of the branch, in particular,
the statement terminates the evaluation when the branch terminates evaluation.

The rules Retry-Until-Continue, Retry-Until-Stop, and Retry-S-Term define how the retry-
until statements are evaluated. Note that retry-until does not have the same semantics as a while
loop: it will always terminate, and the predicate 𝑏 is not guaranteed to hold when the loop ends.
We assume a constant 𝐾 that bounds the number of times the body of a retry-until statement can
be "retried". For any set of traces, we can select a 𝐾 higher than the longest trace. This ensures that

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 9

𝐾 is high enough that any trace can be regenerated by the transformed program without timing
out. We discuss this more in §7.

Each retry-until statement is given a unique identifier, #𝜄 , and each of those identifiers is assigned
0 in the initial local state. The rule Retry-Until-Continue states that a retry-until statement
with identifier #𝜄 evaluates to state 𝜎 ′′ and trace 𝜏 ′ • 𝜏 ′′ when one iteration results in 𝜎 ′ and 𝜏 ′,
𝑏 ∧ #𝜄 < 𝐾 holds in state 𝜎 ′, and evaluating again the retry-until statement with the state 𝜎 ′
where #𝜄 is incremented results in 𝜎 ′′ and 𝜏 ′′. The rule Retry-Until-Stop handles the case where
𝑏 ∧ #𝜄 < 𝐾 does not hold after evaluating the body of the loop. The rule Retry-S-Term handles the
case where the body of the retry loop returns, and therefore the entire program returns. The rules
for for-loops (For-Continue, For-Stop and For-S-Term) are similar, the main difference being
that the variable 𝑥 is bound at each new iteration and the stop condition depends on the size of the
list 𝐿, not the value of the Boolean 𝑏.

We differentiate binding on the type of expression they bind. If it is a call to a hidden function 𝑓
(rule Hidden) then the local state is modified by binding 𝑥 to the value F (𝑦) evaluates to in the
current state 𝜎 , according to the semantics of the data-transformation domain and assuming F
is 𝑓 ’s implementation. The trace is unchanged by the hidden function. If it is a call to a visible
function (rule Visible), the arguments of the call are evaluated in 𝜎 , the result of the call is bound
to 𝑥 in the local state, and the call to A with the input values is recorded in the trace.
The relation A(𝐺, 𝑣) ↓ 𝑒 means that the call to externally defined function A with input 𝑣 in

global state 𝐺 returns a response 𝑒 . We implicitly update the global state as a function of each
visible call and transfer it through sequences. This means that two programs that start in the
same global state and execute the same visible calls receive the same responses to those calls.
This formulation allows us to reason about the semantics of the program given existing pairs of
input-output examples of calls (the traces) without actually executing any of the calls; we only need
to assume the initial global state is the same as in the traces. A limitation of this approach is that
time is not considered, so our approach will be unsound in situations where responses implicitly
depend on time as opposed to ordering.

Finally, we introduce notation for relating traces with programs and states.

Definition 3.2 (Program Evaluation). Let 𝑃 := 𝜆𝑥.𝑆 where 𝑓 := F a program and 𝜎 a state mapping
every variable in 𝑥 to some value and every 𝑓 into the corresponding F . Then, given a starting global
state, there might exist exactly one trace 𝜏 and termination token 𝑐𝑟 such that (𝑆, 𝜎) ⇒ (𝜎 ′, 𝜏, 𝑐𝑟).
If and only if the trace and termination token exist, we say that 𝜏 is a trace of 𝑃 with input 𝜎 and
write 𝑃 (𝜎) = 𝜏 . While not all syntactically valid programs fully evaluate, all synthesized programs
evaluate by construction. Given that all programs we discuss are synthesized, we no longer need to
consider programs that do not successfully evaluate.

4 Synthesis Problem

As we illustrated with our motivating example, the synthesis problem solved in this paper consists
in finding a program 𝑃 in the language described in Figure 4 that reproduces a set of input traces𝑇𝑖𝑛 .
In this section, we formalize this intuitive correctness constraint and define our synthesis problem
as a combination of the correctness constraint and another constraint on the quality of the program.

4.1 Correct Solutions

We use the notion of trace subsumption to describe one program that can generate at least the same
traces as another:

Definition 4.1 (⊒). A program 𝑃 ′ subsumes a program 𝑃 (𝑃 ′ ⊒ 𝑃) if and only if for every state 𝜎
and trace 𝜏 such that 𝑃 (𝜎) = 𝜏 , there exists a state 𝜎 ′ such that 𝑃 ′ (𝜎 ′) = 𝜏 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

10 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Note that ⊒ is a partial order on programs. If 𝑃 ⊒ 𝑃 ′ and 𝑃 ′ ⊒ 𝑃 then 𝑃 and 𝑃 ′ are trace equivalent.
In general, we are interested in transformations that preserve subsumption (i.e. 𝑃 ⇝ 𝑃 ′ only
if 𝑃 ′ ⊒ 𝑃 , where ⇝ is a transformation), not just trace equivalence. Formally, our correctness
constraint Ψ is

Ψ(𝑃,𝑇𝑖𝑛) ≡ ∀𝜏𝑖 ∈ 𝑇𝑖𝑛 · ∃𝜎 · 𝑃 (𝜎) = 𝜏𝑖 . (1)
The set 𝑇𝑖𝑛 is a set of finite input traces 𝜏1, 𝜏2, ..., 𝜏𝑡 3. There is always a trivial solution to Ψ for a

given set of traces 𝑇𝑖𝑛 . It can be constructed using a single integer parameter br and |𝑇𝑖𝑛 | branches,
where each branch can be selected with a value for br, and the branch makes the API calls contained
in the br-th trace of 𝑇𝑖𝑛 . We show in §2 how this solution is built directly from the traces; it simply
replays each of the traces, and the set of possible traces of the program is exactly 𝑇𝑖𝑛 .

Another less trivial solution would consist of combining visible function calls when possible but
leaving all the inputs of the visible calls as parameters of the program, thus always discarding the
output of the visible function call. This is also not an acceptable solution. Although it generalizes
to other inputs, the generalization only comes from the program being entirely parameterized.

4.2 Quality Constraint

Although trivial solutions exist, they usually will not be what a user would expect as output; there
is an expectation that the solution is a generalization of the traces. There are also infinitely many
correct (solutions to Ψ) programs that are very general; consider, for example, a program listing all
possible syntactic productions that satisfy the correctness constraint in branches. However, those
programs are also not typically what the user expects.
To address this challenge, we assume the existence of a program cost function 𝜒 that, given a

program 𝑃 and a set of traces 𝑇𝑖𝑛 , returns a positive number. This program cost function reflects
what the user expects; a good program is one with a low cost. For example, the program cost
function could return the count of branches and the count of parameters of the program, indicating
that the user desires a program with low complexity that is likely to generalize well. The goal of
the synthesizer is to find a program that minimizes the cost function. Formally, the goal is to solve,
given a fixed set of traces 𝑇𝑖𝑛 ,

min
∀𝑃 ·Ψ(𝑃,𝑇𝑖𝑛)

𝜒 (𝑃,𝑇𝑖𝑛). (2)

In this paper, we describe a generic algorithm that is parametric in 𝜒 , first by describing our
rewrites in §5, and then by describing the search approach in §6.

5 Rewriting Programs

Our synthesis algorithm applies a succession of rewrite rules to transform an initial trivial program
into a more general and user-friendly one. Each of these rewrite rules provably maintains the
program’s correctness constraint, Ψ, so that all intermediate programs can generate all input traces
in 𝑇𝑖𝑛 . We split our rules into two categories, synthesis rules and refinement rules, depending on
how they maintain correctness.

Lemma 1. Subsumption preserves correctness: Ψ(𝑃,𝑇𝑖𝑛)
∧
𝑃 ′ ⊒ 𝑃 =⇒ Ψ(𝑃 ′,𝑇𝑖𝑛).

Proof. If 𝑃 can generate all traces in𝑇𝑖𝑛 , and 𝑃 ′ can generate all traces that 𝑃 can generate, then
𝑃 ′ can generate all traces in 𝑇𝑖𝑛 . □

Refinement rewrite rules preserve subsumption: for all 𝑃 and 𝑃 ′, if a refinement rule rewrites
𝑃 into 𝑃 ′, 𝑃 ⇝ 𝑃 ′, then 𝑃 ′ ⊒ 𝑃 . By Lemma 1, these rules preserve the correctness when applied
to a correct program. The following is an example of the application of a refinement rule that
3We always assume that |𝑇𝑖𝑛 | > 1.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 11

extracts an identical instruction R from both branches of an if-then-else statement. This rewrite
does not change the semantics of the program but improves its readability by reducing its number
of instructions.

𝜆 𝑥.
U if C { R S } else { R T } V ⇝

𝜆 𝑥.
U R if C { S } else { T } V

Synthesis rewrite rules all follow the same pattern: replace an expression 𝑒 with the output of a
call to a to-be-synthesized pure function 𝜙 . 𝜙 is not visible in the traces, so we refer to it as a hidden
function. All the bound variables available at the location are used as arguments to 𝜙 , except when
the rule is trying to eliminate a parameter. The correctness of a synthesis rewrite rule is conditioned
by the existence of a solution for the hidden function calls they introduce. Formally, we denote by
Λ𝜙 · 𝑃 a program 𝑃 parametric on a set of hidden functions 𝜙 . For a given set of implementations
𝑓 , (Λ𝜙 · 𝑃) (𝑓) is a valid program in our DSL. A single synthesis rule⇝ rewrites 𝑃 to a program
𝑃 ′ := Λ𝜙 · 𝑃𝑠 parametric on some hidden function 𝜙 . The rewrite rule 𝑃 ⇝ 𝑃 ′ (𝑓) is correct for
some function 𝑓 only if 𝑃 ′ (𝑓) ⊒ 𝑃𝑖𝑛 where 𝑃𝑖𝑛 is the initial program. By Lemma 1, if Ψ(𝑃𝑖𝑛,𝑇𝑖𝑛) and
𝑃 ′ (𝑓) ⊒ 𝑃𝑖𝑛 , then Ψ(𝑃 ′,𝑇𝑖𝑛). Note that we can chain multiple synthesis rules together and check
for correctness only later, i.e. rewrite 𝑃 ⇝ Λ𝜙 · 𝑃𝑠 ⇝ Λ𝜙, 𝜙 ′ · 𝑃 ′𝑠 and then find 𝑓 and 𝑓 ′ later to
instantiate 𝜙 and 𝜙 ′. We explain how to find the implementation of hidden functions 𝑓 in §5.2. For
a list of Syren’s rewrite rules, the reader can refer to Appendix B.

Example 5.1. We illustrate below howwe apply a sequence of rewrite rules to generalize programs
and produce an acceptable solution. Suppose that we have constants c1,c2,c3, visible functions
A, B and some initial program 𝑃𝑖𝑛 as shown below:

𝑃𝑖𝑛 : 𝑃1 : 𝑃2 :
𝜆 br.
if br = 1 {
let x1 = A(c1)
let y = B(c2)

} else {
let x2 = A(c3)

}

⇝

𝜆 br.
let a = (br = 1) ? c1 : c3
if br = 1 {
let x1 = A(a)
let y = B(c2)

} else { let x2 = A(a) }

⇝

𝜆 br.
let a = (br = 1) ? c1 : c3
let x = A(a)
if br = 1 { let y = B(c2) }

𝑃3 : 𝑃4 : 𝑃5 :

⇝

𝜆 br, d.
let x = A(d)
if br = 1 {
let y = B(c2)

}

⇝

Λ 𝜙 𝜆 br, d.
let x = A(d)
let c = 𝜙(d, x)
if c { let y = B(c2) }

⇝

Λ 𝜙 𝜆 br, d.
let x = A(d)
let c = 𝜙(d, x)
if c { let y = B(c2) }

We rewrite 𝑃𝑖𝑛 using a refinement rule that introduces a new variable a, which is bound to the
constants c1 or c3 in the conditional, and then used as argument to the calls to A. 𝑃1 is the
resulting program. Then, we apply to 𝑃1 the refinement rule shown in §5, which factors the
calls to A out of the conditional, resulting in 𝑃2. The third rewrite eliminates the expression
let a = if br = 1 {c1} {c3} which depends on br and introduces a parameter d that takes its
value. This rewrite provably maintains correctness and produces a program, 𝑃3, generalized to any
input d. A fourth rewrite introduces a function parameter 𝜙 (to be synthesized) to eliminate br
from the conditional, resulting in 𝑃4. The final rewrite eliminates the unused parameter br.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

12 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

5.1 Trace Valuation

Rewrites maintain correctness by ensuring that, given an implementation for the hidden function
introduced, the program can still generate the initial set of traces. While refinement rewrite rules are
correct for all inputs of the program, synthesis rewrite rules require more attention. To keep track
of this correctness constraint, we maintain an augmented local state 𝜎 , the trace valuation of the
program, which relates variables in the program with a specific trace and a concrete value (and an
iteration number for variables in loops). The trace valuation stores the relationships necessary for
the rewritten program to reproduce each trace 𝜏 ∈ 𝑇𝑖𝑛 , and each rewrite rule application modifies
that state to maintain the invariant. This ensures that the value of all expressions of the program for
a certain trace is always known, either because the variable’s value is known, or the expression’s
value can be computed from those known values. Given an expression 𝑒 , trace valuations 𝜎 and
trace 𝜏 we denote the value of 𝑒 in trace 𝜏 and state 𝜎 by J𝑒K𝜎,𝜏 .
The initial program has only one variable br, and initially J brK𝜎,𝜏𝑖 = 𝑖 for each trace 𝜏𝑖 ∈ 𝑇𝑖𝑛 .

Then, each rewrite rule⇝ in our system is accompanied with a trace valuation transformation 𝑡 ,
which we denote by⇝𝑡 . We introduce a new function 𝐼 , which extracts the program parameters
from a state, and overload ⇝ to apply to sequences of instructions as well, instead of entire
programs only. Each 𝑡 and associated rewrite ⇝𝑡 is correct when for each input trace, when a
rewrite and corresponding trace valuation transformation are applied, if the program runs with the
inputs of the updated state then it produces the same input trace:

𝜏𝑖 ∈ 𝑇𝑖𝑛 ∧ 𝑡 (𝜎 ′0) = 𝜎 ′1 ∧ (𝑆, 𝜎0) ⇒ (𝜎 ′0, 𝜏𝑖 , 𝑐𝑟) ∧ 𝑆 ⇝𝑡 𝑆
′ =⇒ (𝑆 ′, 𝐼 (𝜎 ′1)) ⇒ (𝜎 ′1, 𝜏𝑖 , 𝑐𝑟)

The function 𝑡 will encapsulate the parameter updates of the rewrite and any functions introduced.
This rule requires the correctness of 𝑆 (in the third conjunct of the hypothesis), and the conclusion
directly implies the correctness of 𝑆 ′, where 𝐼 (𝜓 ′

1) witnesses the existential needed by the correctness
statement.

Synthesis rules replace an expression or number of expressions with a hidden function.

Example 5.2. The refinement rule of Example 5.1 can specified with its transformation 𝑡3:

𝑃2: 𝑃3:
𝜆 br.
let a = if br = 1 { c1 } else { c3 }
let x = A(a)
if br = 1 { let y = B(c2) }

⇝𝑡3

𝜆 br, d.
let x = A(d)
if br = 1 { let y = B(c2) }

where 𝑡3 (𝜎) = 𝜎 [(𝑑, 𝜏) ↦→ J if br = 1 c1 else c3K𝜎,𝜏]

That is, the trace valuation transformation 𝑡3 corresponding to this rewrite assigns the resulting
value of evaluating the eliminated expression if br = 1 c1 else c3 to the new parameter d.
Concretely, if the program above is synthesized from the two traces:

𝜏1 = (A(c1), 𝑜1) :: (B(c2), 𝑜2) and 𝜏2 = (A(c3), 𝑜3)

Given that J brK𝜎,𝜏1 = 1, we have J if br = 1 c1 else c3K𝜎,𝜏1 = true, and therefore J𝑑K𝑡3 (𝜎),𝜏1 =
c1. For the second trace, we would have J𝑑K𝑡3 (𝜎),𝜏1 = c3.
In a following step in Example 5.1, we apply the following synthesis rule to the program:

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 13

𝑃3: 𝑃4:

𝜆 br, d.
let x = A(d)
if br = 1 { let y = B(c2) }

⇝𝑡4

Λ 𝜙 𝜆 br, d.
let x = A(d)
let c = 𝜙(d, x)
if c { let y = B(c2) }

where 𝑡4 (𝜎) = 𝜎 [(𝑐, 𝜏) ↦→ Jbr = 1K𝜎,𝜏]

The trace valuation for program 𝑃4 will map d to the correct boolean value in each trace, that is,
J𝑐K𝜎,𝜏1 = true and J𝑐K𝜎,𝜏2 = false. Additionally, the values for the inputs of 𝑐 and 𝑥 will also be
known from the state, for example for trace 1 J𝑑K𝜎,𝜏1 = c1 and J𝑥K𝜎,𝜏1 = 𝑜1 (see trace 𝜏1).

Example 5.3. The rewrite rules that introduce retry loops are synthesis rules because the condition
on which to stop the loop needs to be synthesized. Syntactically, the rewrite identifies a sequence
of statements, possibly with conditionals, and rolls them into a loop. The following is an example
of a loop introduction rewrite:

𝜆 br, 𝑦.
let a = A(c1)
let b1 = B(c2)
let b2 = B(c2)
if br=1 { let b3 = B(c2) }

⇝𝑡

Λ 𝜙 𝜆 br, 𝑦.
let a = A(c1)
retry {
let b = B(c2)
let s = 𝜙(b, a, 𝑦)

} until s

where 𝑡 (𝜎) = 𝜎 [((b,b,b), 𝜏) ↦→ J (b1,b2,b3)K𝜎,𝜏] ∪ [((s,s,s), 𝜏) ↦→ (false,J br != 1K𝜎,𝜏 ,true)]
In the rewritten program syntax, a new variable s is bound to the result of the hidden function

𝜙 and used as a stopping condition for the retry loop. The key in ensuring this is a correct rewrite
is in the valuation transformation 𝑡 . The new trace valuation maps iterations of b to the values of
each statement that has been captured in the loop, represented by the vector (b1,b2,b3). When
evaluating the program for a trace, the variable b3 will not be defined for the traces where br ≠
1, in which case the value is null. The valuation of condition s is also a vector (s,s,s) that is
computed by assigning the truth value of whether the statement in the trace should be the last one;
at the end of the second iteration, s is true for the trace where br!=1.

5.2 Synthesizing Hidden Functions

B F J == V string or integer equality
| 𝑒𝑚𝑝𝑡𝑦 (J) emptiness check
| !B negation

J F $ input
| J .K select child by name
| J ..K select descendants by name
| J [I] select by index
| J [I : I] slice by index
| 𝑙𝑒𝑛𝑔𝑡ℎ(J) length
| V + J numerical addition
| V • J / string concatenation

K F 𝑘 ∈ keys
V F 𝑣 ∈ values
I F 𝑖 ∈ indices

Fig. 6. Hidden functions synthesis DSL.

The correctness of the result of applying a
synthesis rewrite rule 𝑃 ⇝ 𝑃 ′ (𝑓) depends
on satisfying a set of constraints imposed on
𝑓 by the condition ∃𝑓 .𝑃 ′ (𝑓) ⊒ 𝑃𝑖𝑛 . As we ex-
plained in the previous section, all rewrite
rules update an extended state that keeps
track of the valuations of the variables in a
correct program. Given the value in the ex-
tended state, the synthesis of 𝑓 is reducible to
a standard programming-by-example (PBE)
synthesis problem, deducible from 𝜎 only.
Those constraints are solved with an off-the-
shelf synthesizer to produce either an imple-
mentation for 𝑓 or an unsatisfiability result.
In the latter case, the synthesis rule cannot
be applied while maintaining correctness.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

14 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Generating input/output examples. Synthesis rewrite rules replace an expression 𝑒 in the program
with a function call 𝜙 (𝑥) whose result is bound to a new variable y. Before the rewrite, for each
trace 𝜏 we had some value for 𝑒 , i.e., J𝑒K𝜎,𝜏 = 𝑣𝜏 . To maintain trace subsumption, the transforma-
tion 𝑡 ensures J yK𝑡 (𝜎),𝜏 = 𝑣𝜏 by mapping the new variable y to the appropriate value. A correct
implementation for 𝜙 must satisfy for each trace 𝜏 the input-output constraint 𝜙 (J𝑥K𝜎,𝜏) = 𝑣𝜏 .

Example 5.4. Recall Example 5.2. Program 𝑃4 is parametric on 𝜙 , which appears in the statement
let c = 𝜙(d,x), and is correct for a specific implementation of𝜙 iff for all traces𝜏 ,𝜙 (J𝑑K𝜎,𝜏 , J𝑥K𝜎,𝜏) =
J𝑐K𝜎,𝜏 . Since we have two traces we have the constraints 𝜙 (c1, 𝑜1) = true and 𝜙 (c3, 𝑜3) = false.

Synthesizing solutions. The input-output pairs for each hidden function are used to synthesize
the expression for that hidden function. To achieve this, we encode the problems of our synthesis
domain into an existing example-based program synthesizer. The hidden functions synthesis can be
done in any domain, as long as it is supported by the example-based synthesizer. In this section, we
illustrate using the domain of our running example: cloud automation scripts. The visible functions
are typically APIs that accept parameters and return responses in JSON format [9]. Thus, our domain
targets JSON data manipulation scripts, including small predicates for generating conditions. This
domain covers the majority of use cases of hidden functions between visible function calls in the
automation scripts we observed. JSON is a lightweight, language-agnostic data interchange format
widely used in web applications and APIs. The main (recursive) datatypes are lists and dictionaries,
which map unique string keys to other JSON objects. The base datatypes are booleans, strings and
numbers. Our synthesis domain is summarized in Figure 6, which presents a grammar that includes
basic comparison between objects and values, and JSONPath [16] operations. The non-terminal B
in the grammar symbolizes the boolean expressions we consider in our DSL, and J the JSONPath
expressions. Those operations allow the selection of specific indices, members, or descendants of
JSON data structures. For example, the path $.element[0] selects the element field of the object,
and then the first element in that list.

To the best of our knowledge there is no synthesizer that targets this domain, despite the ubiquity
of JSON to represent data in applications. Solving it requires encoding our problem into a domain
supported by a general purpose synthesizer that allows specifications using input-output examples.
In Syren, we encode the JSONPath synthesis problem grammar into Rosette [34], a solver-aided
programming language with synthesis constructs. Rosette does not support symbolic strings, thus
in our encoding, all strings are constant values extracted from the input and output examples.
The string values are used for keys and values in the grammar in Figure 6, and are the result of
enumerating all keys in the dictionaries in input-output constraints, and all values, respectively. In
some problems, the size of this set of constants becomes a bottleneck because the objects returned
by API calls contain hundreds of keys and values. We parallelize the search for a solution by
producing sub-grammars for the problem, using different sets of keys and values, and different
grammar sizes [8, 15]. Rosette was able to synthesize most Boolean expressions in our benchmarks
in the grammar including a subset of JSONPath and string operations, shown in Figure 6.
We considered an alternative approach to using Rosette: encoding the synthesis problem into

SMT theories, and using a SyGuS solver supporting those theories. The SyGuS language [29] allows
users to specify synthesis problems with input/output pairs as specifications. We encoded JSON
data structures and JSONPath operations using a combination of list and user-defined datatypes for
dictionaries and lists, and string and integer theories for the base types. We tested this encoding
on CVC5 [5] alongside Rosette [34] on our benchmarks, and found that Rosette consistently
outperforms CVC5. CVC5 was unable to solve the problems in our JSONPath benchmarks in
reasonable time. We also experimented with PBE problems in the domain of arithmetic operations,
and CVC5 and the SyGuS encoding outperformed the grammar defined in Rosette. We conclude

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 15

𝜆 br
if br == 1 {

let y_1 = 𝐴1
1 (𝑥

1
1) let y_2 = 𝐴1

2 (𝑥
1
2) ... let y_𝑁1 = 𝐴1

𝑁1
(𝑥1
𝑁1

) (** Replays trace 𝜏1 *)

} else if br == 2 {
let y_1 = 𝐴2

1 (𝑥
2
1) let y_2 = 𝐴2

2 (𝑥
2
2) ... let y_𝑁2 = 𝐴2

𝑁2
(𝑥2
𝑁2

) (** Replays trace 𝜏2 *)

} else if br == 3 {
let y_1= 𝐴3

1 (𝑥
3
1) let y_2 = 𝐴3

2 (𝑥
3
2) ... let y_𝑁3 = 𝐴3

𝑁3
(𝑥3
𝑁3

) (** Replays trace 𝜏3 *)

} else ...

Fig. 8. The initial program 𝑃𝑖𝑛 takes a single integer parameter br, and has |𝑇𝑖𝑛 | branches, where each branch

𝑖 simply replays the visible function calls in trace 𝜏𝑖 ∈ 𝑇𝑖𝑛 . 𝐴𝑞𝑖 is the 𝑖-th function call in trace #𝑞, and 𝑥
𝑞

𝑖
its

corresponding input.

that the performance of the PBE solver to which Syren offloads the hidden function synthesis
depends very highly on the domain. Syren is agnostic to it, and we provide support for using either
CVC5 or Rosette, as well as for parallel portfolio solving.

6 Rewrite Strategies

The synthesis algorithm is a rewrite process that starts with an initial program 𝑃𝑖𝑛 that trivially
satisfies the correctness criterion Ψ, but is not likely to minimize the cost function 𝜒 . The goal
is to transform the initial program by applying refinement and synthesis rules until a program
minimizing 𝜒 is found. Naturally, a naive solution would be to enumerate all possible ways of
rewriting 𝑃𝑖𝑛 . However, depending on the program and the set of rewrites available, there may
not be a finite set of programs. We consider different strategies to explore the search space of all
rewrites efficiently, with the goal of optimizing for 𝜒 .

UNSAT

SAT

Yes

Yes

No

No

Refinement

Synthesis

Fig. 7. Cost-directed alternating rewrite rule application.

Initial Program. We start with a trivially
correct program 𝑃𝑖𝑛 that provably gener-
ates all input traces 𝑇𝑖𝑛 . This program is
constructed by introducing a single param-
eter br and a program body that consists
of |𝑇𝑖𝑛 | branches. Each branch is guarded
by a condition br == 𝑖 , with 0 ≤ 𝑖 < |𝑇𝑖𝑛 |.
The statements in the then-branch are the
API calls of trace 𝜏𝑖 , written as API call
bindings to fresh local variables. The else-
branch contains the other branches. Fig-
ure 8 shows the constructed program.

In Section 5, we distinguish two types of
rewrite rules: refinement rules R★, which
simply rewrite the program maintaining
trace subsumption, and synthesis rules R?

which introduce a data transform synthe-
sis constraint and are correct by construc-
tion of the solution of these constraints.
Intuitively, refinement rules use less mem-
ory and computation, whereas synthesis rules should be applied more carefully. For scalability, one
should use refinement rules as much as possible until applying synthesis rules is necessary.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

16 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Alternating Refinement and Synthesis. Figure 7 illustrates our main algorithm, which alternates
between refinement rule and synthesis rule applications until no rewrite rule is applicable. We start
with the initial program 𝑃𝑖𝑛 and look for refinement rules (in R★) to apply in a way that reduces the
cost of the program (step (I)). The rule that yields the lowest cost is selected first. If such a rule can
be found, we apply it to the current program. We repeat these two steps until no refinement rule
can be found. In that case, the algorithm moves inside the bottom loop. It searches for a synthesis
rule in R? that reduces the most the cost of the program (step (II)). If no rule can be found, the
synthesis terminates with the current program. Otherwise, the algorithm attempts to apply the
rewrite rule ∃𝑓 · 𝑃 ⇝ 𝑃 ′ (𝑓) and solve for 𝑓 using the synthesis process described in Section 5.2.
There are two possible answers: either a solution is found (SAT) or the synthesizer returned UNSAT.
In the first case, the algorithm returns to the upper loop and repeats the entire process. In the other
case, the algorithm backtracks on the synthesis rewrite and attempts to find another synthesis rule
to apply. When no synthesis rules apply, the algorithm returns the final program.

This algorithm applies synthesis rules parsimoniously compared to refinement rules. A synthesis
problem is solved only when no refinement rules can further lower the program cost, and as soon
as a synthesis rule is applied, the algorithm attempts to use more refinement rules.

6.1 Baselines

We give a brief overview of baseline algorithms we implemented as a basis for testing our hypothesis,
starting with the observation that motivates them.

Refine-then-Synthesize. Experimentally, we observe that, in many cases, it may be sufficient to
apply rules in only three phases. First, apply all possible refinement rules to simplify the trivial
program 𝑃𝑖𝑛 . Then, we apply every possible synthesis rule that reduces the program’s cost. Finally,
a final round of refinement rewriting is necessary to clean up the program with the new data
transformations. The intuition is that refinement rules operate mostly on the control flow of the
program, while synthesis rules operate on the data flow, and interaction between the two is minimal.
With that insight in mind, the refine-then-synthesize algorithm (denoted RTS) first applies re-

finement rules, reducing the cost of the program until no refinement rule is applicable, and then
synthesis rules until no rule can be found, and finally another round of refinement rules. In other
words, it is a modification of the algorithm in Figure 7 where the SAT arrow instead points to step
(II) and updates the program, and the No arrow returns to refinement for one round.

𝑘-Bounded Search. One problem of the two previous algorithms is that they may get stuck on
a local minimum of the cost function. A completely different approach that does not have this
problem is a bounded exhaustive search starting from 𝑃𝑖𝑛 . In the 𝑘-bounded search algorithm
(denoted by 𝑘-search), rewrite rules from both the refinement set R★ and synthesis set R? are
applied, independently of their effect on program cost. Rules are applied again to the resulting
programs until all programs resulting from applying 𝑘 rules (where 𝑘 is a constant) are obtained.
Once all possible rewrites are enumerated, the algorithm ranks all rewrites by increasing cost

and attempts to find the program with the lowest cost whose underlying synthesis constraints are
satisfiable. Note that in this version of the algorithm, we do not solve the synthesis problem when
a synthesis rule is applied. The enumeration is done without a single call to the synthesis solver,
which is used only for the programs with low scores.

7 Evaluation

We implemented our synthesis approach in a tool, Syren, and evaluated the different algorithms
and cost functions against a set of benchmarks, showing a promising approach for synthesizing
real-world API composing functions. Since no existing tool can solve the problem out of the box,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 17

we compare against the baseline algorithms introduced in §6: refine-then-synthesize (RTS) and
𝑘-bounded search (𝑘-search). Although comparison against a monolithic syntax-guided synthesis
approach may be possible (e.g., encoding the problem in Rosette), the limitations in the scalability
of Rosette to solve even only the subproblems indicate that it would not scale to the entire problem.

7.1 Implementation

All experiments were run on a 2022 Macbook Pro with an M1Pro processor (10 physical cores)
and 32GB memory. Syren is implemented in OCaml and Python 3.12 and uses the Rosette [34]
solver-aided language (version 4.1 running on Racket version 8.11) with its default solver Z3 (version
4.12) [12] to synthesize data transformations. The implementation uses a synthesis constraint cache
to avoid repeated calls to the solver with the same constraints. This is especially useful since the
algorithm will attempt many synthesis rewrites that will not have a solution.

7.2 Benchmarks

We test Syren on a set of 54 benchmarks that implement various tasks that require branching and
looping (in the form of retries) using various APIs. The full description of each task is available in
Appendix D. We grouped our benchmarks into four different categories to indicate their origin.
The first category is a set of custom benchmarks that we wrote to perform some tasks on cloud
infrastructure, some shell scripts, and SVG manipulation scripts. We then collected tasks from the
Blink automation library [7], where various APIs are interfaced. A similar set of tasks comes from
AWS Systems Manager Automation Runbooks [3]. Our final category consists of tasks adapted
from previous literature; we adapt the nested loop-free benchmarks from ApiPhany [18] that
use Stripe and Slack APIs4. In general, in the benchmarks used to evaluate Syren, there is a clear
separation between the visible function calls (cloud API calls, system calls or library calls) and the
local operations (which can be encoded into some solver’s theory). When constructing the set of
traces, two important parameters have to be considered: whether the different sequences of visible
calls exemplify the desired program’s control flow paths, and whether the various input values to
the calls are sufficient to infer the hidden function’s implementation in a given domain (e.g. JSON
transformations requires fewer examples than arithmetic).

Wewrote programs for each benchmark and collected the inputs for the synthesizer by simulating
the traces those programs would produce. We ran each program for enough different inputs that the
produced traces exercise all program paths; we manually inspected the synthesized program and
added more traces when it did not exemplify all the behaviors of the target benchmark program. We
collected between 2 and 10 traces (median 4) for each benchmark. This is not the smallest number
of traces necessary to describe the task, but a reasonable amount that the user could provide.

Our benchmarks include synthesis tasks of varying complexity so we can gauge how well Syren
scales. Although we cannot predict how complex a given task is to synthesize, we can estimate it
by the complexity of the smallest program that performs that task. We do so by considering the
number of conditionals, loops, and hidden functions in the program.

7.3 Cost Functions

We ran experiments with two different cost functions to evaluate the flexibility of our approach with
respect to different user-defined notions of "best program." We follow the general idea that good
programs are simple programs that generalize well. The rewrite rules, especially the refinement
rules, are generally geared towards syntactic simplification of the program. The cost functions

4We collect benchmarks from ApiPhany [18] by simulating traces from their solutions that do not have list comprehensions.
However, we cannot make a direct comparison since our specifications are traces and theirs are types.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

18 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

.01 .1s 1s 10s 1m 5m
Synthesis time

0

10

20

30

40

50

In
st

an
ce

s
so

lv
ed

A
RTS

k-search

(a) Number of benchmarks solved (optimal

solution synthesized) for each algorithm of

Syren with score function 𝜒syn against syn-

thesis time.

χsyn χT

A
R

T
S

k
-s

ea
rc

h
S

ea
rc

h
al

go
ri

th
m 72% 70%

42% 46%

14% 24%

Scoring function

(b) Percentage of benchmarks for

which Syren synthesized the opti-

mal solution by search algorithm

and scoring function.

0 1 2 3+

0

1

2

3+

H
id

de
n

fu
nc

ti
on

s 7/8 10/12 3/4 1/1

0/1 10/13 4/5 -

1/1 1/1 2/3 0/1

- - - 0/3

Control flow

(c) Count of optimally synthesized / to-

tal benchmarks, grouped by complexity

measures (# hidden functions, # control

flow statements) of the program.

Fig. 9. Comparison of synthesis times and quality of synthesized programs using different search algorithms

and cost functions. The background color in the heat map in 9b reflects the same data as the labels. In 9c, we

show Syren’s ability to scale to complex benchmarks. The darker the color the the better Syren preformed for

benchmarks of that complexity.

match this high-level goal and generally assign a lower cost to simpler programs; the exact meaning
of simplicity depends on the user.

Syntactic Complexity. The first method we use, denoted by 𝜒syn, is a straightforward cost function
that describes the syntactic complexity of the program. This intuitively corresponds to a user who
desires a program that is syntactically as simple as possible. This function computes a weighted
sum of the number of conditionals, loops, and parameters in the program and a penalty for using
the dummy branching variable br introduced in the initial program. We use a simplified version of
the function in the running example of §2. This function can easily be customized, for example,
by modifying the weights of each characteristic in the summation. Typically, we prioritize fewer
statements, then fewer parameters, and set the weights accordingly. The penalty for the br variable
ensures that the algorithm will prioritize eliminating this parameter over all else.

Reuse Across Traces. Our second cost function, denoted by 𝜒T, measures how many times API
call statements are reused with respect to the input set of traces. For each trace in 𝑇𝑖𝑛 , we count
how many times each API call statement in the program must be called to produce the trace. The
cost is the total number of API calls in the traces plus the number of statements minus the sum of
the counts for all statements and all traces. Intuitively, a program with a lower cost means that the
API call statements are reused more often; for example, unrolling a loop would increase the cost.
We also add a penalty for using the br variable. This is another measure of the program’s simplicity.
This cost function is coarser in that it assigns the same cost to many different programs.

7.4 Results

The goal is to synthesize a program that is equivalent to the one used to collect traces from; when
we report synthesis success, this means the synthesized program is syntactically equivalent to the
desired program (modulo variable renaming). Since Syren may terminate with a correct solution
that is not optimal (i.e. has a larger cost than our desired program), we also report when the tool
terminated but did not solve the benchmark.

Figure 9 plots the synthesis time required for each benchmark and combination of cost function
(𝜒syn or 𝜒T) and algorithms (A for our algorithm, RTS and 𝑘-bounded for the baselines). Each
experiment runs 10 times with a timeout of 10 minutes. We use a fixed 𝑘 = 6.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 19

Our proposed algorithm A finds the most solutions across benchmarks and cost functions
(39 or 72% optimally synthesized for syntactic cost, and 38 or 70% for trace reuse cost out of 54
benchmarks). The simplified algorithm, RTS, produces fewer optimal solutions, 23 (42%) for 𝜒syn
and 25 (46%) for 𝜒𝑇); in many cases the solution produced is not optimal because the algorithm
did not attempt enough rewrites. This is especially the case for the more complex benchmarks
containing loops. We found that the choice of scoring function has little impact on solving time.
However, 𝜒𝑇 is more coarse in the sense that more programs may have the same score, and when
manually inspecting solutions, we found that they are usually farther from the ideal solution. 𝜒syn
is better at characterizing the ideal solution. The solutions obtained required from 4 to 36 rewrites.
The tables in the Appendix A list detailed synthesis times for all benchmarks.

The bounded search performs poorly across the benchmarks (13 optimally solved for 𝜒𝑇), either
yielding a poor solution (because of a small 𝑘) or timing out. The size of the search space for the
bounded search is a combination of both the number of rewrite rules and the complexity of the
initial program. In general, we observed that scaling 𝑘 to the same number used to find a solution
using the other algorithms would produce an intractable search space. Interestingly, we observe
many timeouts for the 𝜒𝑇 cost function; there are many programs with the same cost, but most of
them have unrealizable synthesis subproblems.
Even when the best synthesizable solution does not require a data transformation, the rewrite

process might still attempt to find some. Synthesis time is dominated by the number of synthesis
rewrites attempted rather than the number that ends up being used, so time often does not
correspond to the total number of rewrites. For example, synthesizing a solution for the CreateTable
benchmark takes 78s, despite not requiring any data transformation. However, since there are
two API calls with many arguments, the algorithm must ensure, by attempting to synthesize data
transformations, that none of the arguments of the second API call can be computed from the
results of the first API call.

Comparison against Large Language Models. Large Language Models (LLMs) allow users to
generate code from natural language specifications. One can speculate whether specifications could
also be given as a list of traces, as in our problem. To compare Syren against LLMs, we queried
Claude 3.5 Sonnet [2] with a prompt explaining the problem to solve, followed by the same traces
used by Syren, in JSON format (see the full prompt in Appendix C). The output is expected to be a
Python script that should be correct (in the sense of Equation 1) and semantically close to the ideal
program. With that success criterion in mind, the LLM synthesizes a correct and optimal solution
for 29 benchmarks (53% of total).
Note that the evaluation of correctness and equivalence is manual work on our part. This

highlights a crucial difference between the two methods. When Syren succeeds and generates a
program, the user trusts it is correct, in the sense that it will reproduce the traces. If Syren cannot
generate a good program, it will fail or otherwise generate a program that is not general enough, but
the output is always safe to use. Specifically, it will never make API calls different from those in the
traces, or calls with new inputs. On the other hand, LLMs can fail to synthesize a correct program
silently; their output can be subtly incorrect, and verifying this output would require effort (that
Syren avoids by generating a program correct by construction). For example, in the task described
in §2, Claude synthesizes the condition status == "running" instead of status != "stopped",
which does not satisfy traces where the instance status is "stopping".

Limitations. Our evaluation compares Syren’s default search strategy to our own baselines. To
the best of our knowledge, there is no other tool that currently solves this problem, in which the
specification is a set of partial traces.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

20 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Our diverse range of benchmarks includes a few examples where Syren times out or does
not return a good solution. Some of those are due to the limited expressive power of the syntax-
guided synthesis approach used to create the data transformations. For example, the benchmark
ReportLongRunningInstancesToSlack requires reasoning about dates and time intervals, and our
solver cannot currently synthesize a solution. The objective program cannot be represented in
our synthesis DSL, so we cannot indicate the number of ifs or loops such a program would have.
Similarly, the CreateImage benchmark requires reasoning about string operations. Improving the
underlying PBE solver to handle more and more complex date, integer, and string operations is
an interesting and promising direction of future research. Such improvements would result in an
improvement of Syren’s performance without further modification. The rewrite system also has
limitations when considering benchmarks with complex control flow. For example, our tool fails to
synthesize the automation AWSSupport-CopyEC2Instance, which has a loop, 5 conditionals, and
16 data transformations to synthesize. Our approach also cannot synthesize any control flow that
happens before the first API call in the automation to be synthesized. For example, the benchmark
AWS-ConfigureS3BucketVersioning contains empty traces that correspond to situations where the
user ran the script, but it terminated before performing any API call. Our approach is unable to
infer this behavior, since it cannot observe what the potential inputs to the decision are.
Our current representation of loops limits the programs we can synthesize. We are unable to

synthesize programs that loop a fixed number of times and then time out. If Syren is given the
traces that result from this pattern, it will instead attempt to discover a condition that is consistent
across all the final API calls, which will not exist in general. We omitted the benchmarks from
ApiPhany[18] that could not be generated because either they contain nested loops or the loop
iterates on parameter of the script. We believe those limitations could be lifted in future work,
allowing Syren to synthesize programs with more complex structures.

8 Related Work

In this section, we provide a more in-depth overview of previous work related to ours. Although
we found strong work on problems related to the one Syren solves, there is no previous solution to
solve the same problem. We compare our work against techniques that target similar outputs, i.e.
programs with API calls. Then, we look at work that consider similar trace-based specifications,
which we can mainly classify in programming-by-demonstration. Finally, we look at work similar
in their approach: rewriting techniques and syntax-guided synthesis.

Synthesis with API calls. SyPet [14], TYGAR [19], RbSyn [20] and ApiPhany [18] propose type-
guided approaches to synthesis of programs containing sequences of API calls. All three address
component-based synthesis, which focuses on finding a composition of components (API calls or
library functions) that implements some desired task. These systems differ from Syren in more
than one aspect. First, SyPet, TYGAR, RbSyn, and ApiPhany take as a specification the desired
input and output types of a program. Syren, on the other hand, synthesizes a program using logs
of the desired task executed manually. The contrasts between their approach and ours go beyond
the input specification: in their approach, the main challenge SyPet tackles is the large search
space of API calls that it has to consider, which results from the ever-increasing expressivity and
size of API libraries. TYGAR and ApiPhany propose additional techniques to better represent and
understand API calls, thus effectively reducing this search space. The challenge in our problem
is not to discover which API calls need to be made because they are present in the traces, and
thus, the API size does not impact our problem. However, we consider more complex interactions
between API calls and synthesize data operations that correspond to the non-observable part of
the traces. Conversely, due to the nature of our approach, where we synthesize scripts based on

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 21

logs, we already know which API calls are made, so the complexity of our synthesis procedure is
not affected by the size of the underlying APIs.
DemoMatch [37] discovers code snippets explaining API usage, but in the authors’ own words

“While DemoMatch produces code, it is not a program synthesis tool; it is an API discovery tool.”

Programming-by-demonstration (PBD). There are examples of work in PBD that target the au-
tomation of web tasks, one of the domains to which we applied Syren, but there are significant
differences in the setting and method that justify our claim of novelty. Ringer [6] explores ways to
represent one recording of a user interacting with a web page and outputs a script that reproduces a
single execution of the demonstrated behavior. Our work attempts to generalize multiple executions
into a program from logs; the generalization over data required in our setting is not a problem for
Ringer. Approaches such as Konure [32], DemoMatch [37], PUMICE [24], and Sketch-n-Sketch
[10] are distinct from ours because we synthesize programs only from the logs of the API calls
they make, without examples of the local operations of the program to be synthesized. None of
the works cited above attempts to synthesize hidden functions, especially with conditions that
depend on the outputs of visible function calls. Furthermore, some of the approaches rely on
interactive demonstrations to generalize their data (WebRobot [13]) or queries (Konure [32]), or
on an existing program to extract dynamic traces from (Chisel [26]). Instead, we rely only on
a fixed set of examples. Inferring conditionals and loops when a user or algorithm can test the
program paths through demonstrations is a different task from inferring them only by optimiz-
ing for a cost function. Like Syren, WebRobot [13] and Arborist [25] use a rewriting strategy to
synthesize programs, with speculative rewrites to generalize patterns. However, their method is
interactive and relies on the user to validate the heuristic speculations made by the algorithm.
In contrast, we rely on data transformation synthesis to validate the applicability of a synthesis
rewrite rule (for conditions and loops) and on the cost function to direct the application of rewrite
rules. Neither attempts to synthesize decision-making control flow, i.e., if-statements, or loop
conditionals (they synthesize for-each loops and while(true) loops, whereas we focus on loops
that are stopped by a condition). The synthesis and generalization of these structures is the main
challenge in our approach. Our work differentiates itself from Konure [32] in two significant ways.
First, Konure is an active learning system that requires querying of the system that needs modeling.
Our system is completely passive (closer to PBE than to PBD) and relies only on a fixed set of
examples. Second, Konure has full observability over what it generates. For example, the predicates
in their DSL are SQL queries, which are observable in the trace. The authors mention that to
support more sophisticated implementations in their DSL they suppose that they would need to
have a more fine-grained observation of the application. Instead, we propose that fine-grained data
operations can be synthesized using a synthesis solver for small expressions. Our paper shows that
this difficulty requires carefully exploring the search space of rewrite rules.

Program Rewriting. There is a rich history of work in applying rewriting strategies for program
analysis, refactoring, or optimization [27, 35]. Superoptimization [22, 23, 31] problems, where
programs must be rewritten to optimize for a given cost, are classic applications of such techniques.
Our application is different in that many of our rewrites are whole-program rewrites that need
to consider the state of the program, as opposed to small local rewrites. Note that our approach
would not scale when applying many rewrites in an exploratory search: we also need to solve the
underlying syntax-guided synthesis problems, which are much more computationally expensive
than syntactic rewrite rules. To the best of our knowledge, this work is the first to introduce a
system where the application of a rewrite rule is conditional on solving an input-/output-based
synthesis problem. Rewrite approaches have also been used to solve other synthesis problems, such
as automatic parallelization in Mold [30]. Although they also consider a two-phase approach with

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

22 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

refinement and exploration, they use solely fixed rewrite rules instead of our synthesis rules, and
the exploratory phase does not have the same expressive power as our synthesis-based solution.
Szalinski [27] describes an approach that takes a flat, hard-to-read program and introduces map
and fold operators using optimizing rewrites. Although its goal is similar to the rewrite part of our
approach, Szalinski has no way to synthesize hidden logic in control flow.

Off-the-shelf SyGuS solver. The problem Syren tackles could, in theory, be encoded into Syntax-
Guided Synthesis (SyGuS) [1] and solved using an off-the-shelf solver, such as CVC5 [5]. We
attempted to implement this approach and ran into two problems. First, it is challenging to encode
side-effecting functions as uninterpreted functions because the output is not a direct function of
the inputs alone. Their output depends on some global state, updated by other functions in the
program. More complex encodings can be designed, but they would be a novel contribution on their
own, in particular, if they could be made to perform well. With any straightforward encoding, the
resulting formula would be too complex to be solved in a reasonable time by CVC5. As explained
in §5.2, we were unable to use CVC5 for even the JSON synthesis subproblems.

9 Conclusion and Future Work

In this paper we described a novel approach for the synthesis of scripts with calls to side-effecting
methods, such as web API method calls, from partial execution traces containing only those calls.
The described approach combines a search through a space of rewrite rules that mutate the program
without jeopardizing its correctness, and syntax-guided synthesis, which allows us to fill in the
expressions that we cannot observed in the traces. We implement our approach in Syren, and test
it on 54 benchmarks that combine hand-written examples based on common visual interface tasks,
scripts from publicly available libraries, and benchmarks from previous work. We show that our
approach can successfully synthesize 39/54 scripts in under 5 minutes.

The main bottleneck in Syren’s results is in the data-transformations synthesis, so performance
improvements should focus on syntax-based synthesis within the domain of JSONPath. Another
improvement would be writing more specific grammars for the data transforms synthesis, by
leveraging additional information about the types of the inputs and outputs, or even their semantic
types, as suggested by ApiPhany [18]. Another interesting orthogonal line of work would be to
allow traces which show errors on the calls, and synthesize scripts with error handling. Syren
could also be extended to cover more looping behavior, particularly timeouts.
We believe the problem Syren solves is an important and very general problem, yet we had to

construct a new set of benchmarks to evaluate our approach. In related work, the benchmarks
included either types, synthesized programs or complete traces, where a clear separation between
API-level and local operations was not clear. Our benchmark set could be extended with additional
use cases where that separation is clear, and the collection of traces is plausible because the system
collecting the traces is external to the hidden program. For example, one can collect traces of library
calls, system calls or various cloud API calls. The quantity and quality required to synthesize a
given program will depend on the control-flow complexity of that program, and the ability of an
underlying hidden function synthesizer to synthesize data transformations from few examples.

Acknowledgments

We are grateful to Ruben Martins and Ricardo Brancas for their feedback on multiple drafts of this
paper. We also thank Ricardo for his very insightful suggestions that improved Syren’s evaluation.
Finally, we thank the anonymous reviewers and shepherd for their comments and guidance. This
work was partially done during an internship at Amazon. Margarida Ferreira is supported by

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 23

the Portuguese Foundation for Science and Technology under the Carnegie Mellon Portugal PhD
fellowship SFRH/BD/151467/2021.

Data-Availability Statement

The source code for Syren is available on Zenodo [28], along with all the data we used to test it.
The artifact contains comprehensive instructions and scripts to reproduce the experiments reported
in this paper.

References

[1] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In FMCAD. IEEE,
Portland, OR, USA, 1–8. https://doi.org/10.1109/FMCAD.2013.6679385

[2] Anthropic. 2024. Introducing Claude 3.5 Sonnnet. https://www.anthropic.com/news/claude-3-5-sonnet.
[3] AWS. 2023. AWS Automation Runbooks Reference. https://docs.aws.amazon.com/systems-manager-automation-

runbooks/latest/userguide/automation-runbook-reference.html.
[4] AWS. 2023. What is AWS? https://aws.amazon.com/what-is-aws/.
[5] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In TACAS. Springer, Munich,
Germany, 415–442. https://doi.org/10.1007/978-3-030-99524-9_24

[6] Shaon Barman, Sarah E. Chasins, Rastislav Bodík, and Sumit Gulwani. 2016. Ringer: web automation by demonstration.
In OOPSLA. ACM, Amsterdam, The Netherlands, 748–764. https://doi.org/10.1145/2983990.2984020

[7] Blink. 2023. Blink | The Security Automation Copilot. https://www.blinkops.com/.
[8] Ricardo Brancas, Miguel Terra-Neves, Miguel Ventura, Vasco Manquinho, and Ruben Martins. 2024. Towards Reliable

SQL Synthesis: Fuzzing-Based Evaluation and Disambiguation. In FASE. Springer, Luxembourg City, Luxembourg,
232–254. https://doi.org/10.1007/978-3-031-57259-3_11

[9] Tim Bray. 2017. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259. https://doi.org/10.17487/
RFC8259

[10] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and direct manipulation, together
at last. In PLDI. ACM, Santa Barbara, CA, USA, 341–354. https://doi.org/10.1145/2908080.2908103

[11] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby, Brad A. Myers, and Alan
Turransky (Eds.). 1993. Watch what I do: programming by demonstration. MIT Press, Cambridge, MA, USA.

[12] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (Lecture Notes in
Computer Science, Vol. 4963). Springer, Budapest, Hungary, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[13] Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang. 2022. WebRobot: web robotic process
automation using interactive programming-by-demonstration. In PLDI. ACM, San Diego, CA, USA, 152–167. https:
//doi.org/10.1145/3519939.3523711

[14] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017. Component-based synthesis for
complex APIs. In POPL. ACM, Paris, France, 599–612. https://doi.org/10.1145/3009837.3009851

[15] Margarida Ferreira, Ranysha Ware, Yash Kothari, Inês Lynce, Ruben Martins, Akshay Narayan, and Justine Sherry.
2024. Reverse-Engineering Congestion Control Algorithm Behavior. In IMC. ACM, Madrid, Spain, 401–414. https:
//doi.org/10.1145/3646547.3688443

[16] Jeff Friesen. 2019. Extracting JSON Values with JsonPath: Document Processing for Java SE. Apress Berkeley, CA,
Berkeley, CA, USA, 299–322. https://doi.org/10.1007/978-1-4842-4330-5_10

[17] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Found. Trends Program. Lang. 4, 1-2
(2017), 1–119. https://doi.org/10.1561/2500000010

[18] Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, and Nadia Polikarpova. 2022. Type-directed program
synthesis for RESTful APIs. In PLDI. ACM, San Diego, CA, USA, 122–136. https://doi.org/10.1145/3519939.3523450

[19] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. 2020.
Program synthesis by type-guided abstraction refinement. In POPL. ACM, New Orleans, LA, United States, 12:1–12:28.
https://doi.org/10.1145/3371080

[20] Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. 2021. RbSyn: Type- and Effect-Guided Program Synthesis.
In PLDI. ACM, Virtual, Canada, 344–358. https://doi.org/10.1145/3453483.3454048

[21] Natasha Yogananda Jeppu, Thomas F. Melham, Daniel Kroening, and John O’Leary. 2020. Learning Concise Models from
Long Execution Traces. In DAC. IEEE, San Francisco, CA, USA, 1–6. https://doi.org/10.1109/DAC18072.2020.9218613

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

https://doi.org/10.1109/FMCAD.2013.6679385
https://www.anthropic.com/news/claude-3-5-sonnet
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-runbook-reference.html
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-runbook-reference.html
https://aws.amazon.com/what-is-aws/
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/2983990.2984020
https://www.blinkops.com/
https://doi.org/10.1007/978-3-031-57259-3_11
https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3519939.3523711
https://doi.org/10.1145/3519939.3523711
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3646547.3688443
https://doi.org/10.1145/3646547.3688443
https://doi.org/10.1007/978-1-4842-4330-5_10
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3519939.3523450
https://doi.org/10.1145/3371080
https://doi.org/10.1145/3453483.3454048
https://doi.org/10.1109/DAC18072.2020.9218613

24 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

[22] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-Directed Superoptimizer. In PLDI (Berlin, Germany).
ACM, Beijing, China, 304–314. https://doi.org/10.1145/512529.512566

[23] Joel Kuepper, Andres Erbsen, Jason Gross, Owen Conoly, Chuyue Sun, Samuel Tian, David Wu, Adam Chlipala,
Chitchanok Chuengsatiansup, Daniel Genkin, Markus Wagner, and Yuval Yarom. 2023. CryptOpt: Verified Compilation
with Randomized Program Search for Cryptographic Primitives. In PLDI. ACM, Orlando, FL, United States, 1268–1292.
https://doi.org/10.1145/3591272

[24] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M. Mitchell, and Brad A. Myers. 2019. PUMICE:
A Multi-Modal Agent that Learns Concepts and Conditionals from Natural Language and Demonstrations. In UIST.
ACM, New Orleans, LA, USA, 577–589. https://doi.org/10.1145/3332165.3347899

[25] Xiang Li, Xiangyu Zhou, Rui Dong, Yihong Zhang, and Xinyu Wang. 2024. Efficient Bottom-Up Synthesis for Programs
with Local Variables. In POPL. ACM, London, UK, 1540–1568. https://doi.org/10.1145/3632894

[26] BenjaminMariano, ZitengWang, Shankara Pailoor, Christian Collberg, and Işil Dillig. 2024. Control-FlowDeobfuscation
using Trace-Informed Compositional Program Synthesis. In OOPSLA. ACM, Pasadena, CA, USA, 2211–2241. https:
//doi.org/10.1145/3689789

[27] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan Grossman, and Zachary
Tatlock. 2020. Synthesizing structured CAD models with equality saturation and inverse transformations. In PLDI.
ACM, London, UK, 31–44. https://doi.org/10.1145/3385412.3386012

[28] Victor Nicolet and Margarida Ferreira. 2025. Program Synthesis From Partial Traces (Software Artifact). https:
//doi.org/10.5281/zenodo.15047359

[29] Saswat Padhi, Elizabeth Polgreen, Mukund Raghothaman, Andrew Reynolds, and Abhishek Udupa. 2023. The SyGuS
Language Standard Version 2.1. https://doi.org/10.48550/arXiv.2312.06001 arXiv:2312.06001 [cs.PL]

[30] Cosmin Radoi, Stephen J. Fink, RodricM. Rabbah, andManu Sridharan. 2014. Translating imperative code toMapReduce.
In OOPSLA. ACM, Portland, OR, USA, 909–927. https://doi.org/10.1145/2714064.2660228

[31] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. In ASPLOS. ACM, Houston, Texas,
USA, 305–316. https://doi.org/10.1145/2451116.2451150

[32] Jiasi Shen and Martin C. Rinard. 2019. Using active learning to synthesize models of applications that access databases.
In PLDI. ACM, Phoenix, AZ, USA, 269–285. https://doi.org/10.1145/3314221.3314591

[33] Richard Shin, Illia Polosukhin, and Dawn Song. 2018. Improving Neural Program Synthesis with Inferred Execution
Traces. In NeurIPS. Curran Associates, Inc., Montréal, Canada, 8931–8940. https://proceedings.neurips.cc/paper/2018/
hash/7776e88b0c189539098176589250bcba-Abstract.html

[34] Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In
PLDI. ACM, Edinburgh, UK, 530–541. https://doi.org/10.1145/2594291.2594340

[35] Eelco Visser. 2001. A Survey of Rewriting Strategies in Program Transformation Systems. Electronic Notes in Theoretical
Computer Science 57 (2001), 109–143. https://doi.org/10.1016/S1571-0661(04)00270-1

[36] Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana, and Anirudh Sivaraman. 2021. Synthesizing safe
and efficient kernel extensions for packet processing. In SIGCOMM. ACM, Virtal (online), 50–64. https://doi.org/10.
1145/3452296.3472929

[37] Kuat Yessenov, Ivan Kuraj, and Armando Solar-Lezama. 2017. DemoMatch: API discovery from demonstrations. In
PLDI. ACM, Barcelona, Spain, 64–78. https://doi.org/10.1145/3062341.3062386

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

https://doi.org/10.1145/512529.512566
https://doi.org/10.1145/3591272
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3632894
https://doi.org/10.1145/3689789
https://doi.org/10.1145/3689789
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.5281/zenodo.15047359
https://doi.org/10.5281/zenodo.15047359
https://doi.org/10.48550/arXiv.2312.06001
https://arxiv.org/abs/2312.06001
https://doi.org/10.1145/2714064.2660228
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/3314221.3314591
https://proceedings.neurips.cc/paper/2018/hash/7776e88b0c189539098176589250bcba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7776e88b0c189539098176589250bcba-Abstract.html
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1016/S1571-0661(04)00270-1
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1145/3062341.3062386

A Benchmarks and Detailed Results

Table 1. List of benchmarks, measures of complexity, and outcome of synthesis using Syren (𝜒synand A) or

an LLM. #Traces indicates the number of traces used to generate the program. #If (#Loop, #Hidden-𝑓) report

the number of conditionals (resp. loops, hidden functions) in the best synthesizable solution. The outcome

columns report the synthesis outcome for either Syren (Timeout, Terminated or Optimal) or the LLM (Success

or Failure).

Name #Traces #If #Loop #Hidden-𝑓 Syren outcome LLM outcome
Custom Benchmarks

Start Instances 7 0 0 0 Optimal Success
Stop Instances 9 0 0 0 Optimal Success
Create Image 4 0 0 1 Timeout Failure
Create Image From Ssm Parameter And Log 3 0 0 4 Optimal Success
Create Table 7 0 0 0 Optimal Failure
Delete Table 7 0 0 0 Optimal Failure
Create Bucket Then Folder 3 0 0 1 Optimal Success
Put Object If Not Present 6 1 0 1 Optimal Failure
Stop Instances Cond 6 1 0 1 Optimal Failure
Create Table Insert Item 8 0 1 1 Timeout Success
Backup Then Delete Table 6 0 1 2 Optimal Success
Start Instances With Tags 7 0 0 1 Optimal Success
Stop All Running Instances 4 0 0 1 Optimal Success
Move Ddb Item 7 0 0 1 Optimal Failure
Move Ddb Item If Present 8 1 0 2 Optimal Success
Copy S3Objects 3 1 1 2 Optimal Failure
Tag Instances With Dry Run 4 1 0 1 Optimal Failure
Send Email On Input 3 0 1 1 Optimal Success
Retrieve Channel Members 3 0 1 2 Optimal Failure
List and move files 3 1 1 0 Optimal Failure
Clean current dir 2 1 1 1 Optimal Success
Clean regular files in dir 2 1 1 2 Optimal Success
Conversation members 4 1 1 3 Timeout Failure
SVG-Increase Circle Radius-json 3 0 0 2 Terminated Failure
SVG-Increase Circle Radius 3 0 0 1 Optimal Success

Blink Automation
Copy Instance To New Region 4 0 1 2 Timeout Success
Report Long Running Instances 8 ?? ?? -1 Timeout Failure
Create Iam User And Notify 3 0 0 1 Optimal Failure

AWS Automation Runbooks
Stop EC2Instance 5 0 0 0 Optimal Success
Start EC2Instance 5 1 0 2 Optimal Failure
Configure S3Bucket Versioning 9 0 0 1 Terminated Success
Configure Cloud Watch On EC2 8 1 0 0 Terminated Failure
Copy EC2Instance 3 5 1 16 Timeout Failure
Resize Instance 8 3 2 3 Timeout Failure
Set Required Tags 4 0 0 0 Optimal Success

Literature benchmarks
Api Phany Ex. 1.1 4 1 2 5 Timeout Success
Api Phany Ex. 1.2 3 0 0 2 Optimal Failure
Api Phany Ex. 1.6 3 0 0 1 Optimal Success
Api Phany Ex. 1.8 3 0 0 1 Optimal Success
Api Phany Ex. 2.1 3 0 1 1 Optimal Success
Api Phany Ex. 2.3 3 0 0 2 Optimal Success
Api Phany Ex. 2.5 3 0 1 1 Optimal Success
Api Phany Ex. 2.6 3 0 0 1 Optimal Failure
Api Phany Ex. 2.7 4 0 1 1 Optimal Success
Api Phany Ex. 2.10 2 0 1 1 Timeout Success
Api Phany Ex. 2.11 3 0 0 1 Optimal Failure
Api Phany Ex. 2.13 3 0 0 2 Optimal Success
Api Phany Ex. 3.1 2 0 0 0 Optimal Failure
Api Phany Ex. 3.3 3 0 0 0 Terminated Failure
Api Phany Ex. 3.4* 2 0 1 1 Optimal Failure
Api Phany Ex. 3.6 3 0 1 1 Optimal Success
Api Phany Ex. 3.7 2 0 1 1 Optimal Success
Api Phany Ex. 3.8 2 0 2 2 Timeout Success
Api Phany Ex. 3.9 3 0 1 1 Timeout Failure

26 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Table 2. List of Custom benchmarks, with synthesis time and number of SyGuS solver calls. For each algorithm

(A, RTS and 𝑘-search) we report the synthesis time in seconds, the number of total SyGuS solver calls, and

the subset of those calls that returned SAT, in parenthesis. When Syren times out (TO), it does not report the

number of solver calls (N/A).

Custom Benchmarks
𝜒syn 𝜒T

A RTS 𝑘-search A RTS 𝑘-search

Name Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Start Instances <0.01 0 (0) <0.01 0 (0) TO N/A <0.01 0 (0) <0.01 0 (0) TO N/A

Stop Instances <0.01 0 (0) <0.01 0 (0) TO N/A <0.01 0 (0) <0.01 0 (0) TO N/A

Create Image TO N/A TO N/A 0.16 0 (0) TO N/A TO N/A TO N/A

Create Image From Ssm Pa-
rameter And Log

207.02 8 (4) 206.53 8 (4) 201.87 0 (0) 210.21 8 (4) 205.58 8 (4) TO N/A

Create Table 78.33 4 (0) 123.40 7 (0) 0.44 0 (0) 77.97 4 (0) 123.41 7 (0) TO N/A

Delete Table <0.01 0 (0) <0.01 0 (0) TO N/A <0.01 0 (0) <0.01 0 (0) TO N/A

Create Bucket Then Folder 25.76 3 (2) 4.14 2 (3) 0.11 6 (61) 25.85 3 (2) 4.13 2 (3) 0.06 1 (1)

Put Object If Not Present 256.88 5 (1) 269.27 8 (1) 0.74 0 (0) 13.65 3 (1) 268.51 8 (1) 175.23 10 (1)

Stop Instances Cond 57.80 7 (7) 51.84 5 (6) 0.37 0 (0) 50.71 3 (3) 54.64 5 (7) 104.34 7 (2)

Create Table Insert Item TO N/A TO N/A 310.20 6 (3) TO N/A TO N/A 310.29 6 (1)

Backup Then Delete Table 198.66 11 (4) 200.20 9 (4) 2.08 0 (0) 196.25 8 (3) TO N/A 2.08 0 (0)

Start Instances With Tags 14.22 2 (1) 17.83 2 (1) 0.35 1 (1) 19.32 2 (1) 20.56 2 (1) 0.43 1 (0)

Stop All Running Instances 24.30 1 (1) 24.24 1 (1) TO N/A 16.29 1 (1) 21.72 1 (1) TO N/A

Move Ddb Item 119.49 6 (1) 109.31 7 (1) 0.38 0 (0) 89.38 6 (1) 108.40 7 (1) TO N/A

Move Ddb Item If Present 91.50 7 (2) 102.89 8 (2) 2.18 0 (0) 32.67 3 (1) 102.27 8 (3) TO N/A

Copy S3Objects 110.38 4 (2) TO N/A 3.32 2 (2) 110.17 4 (2) TO N/A 3.18 2 (2)

Tag Instances With Dry Run 74.95 9 (3) 62.35 8 (3) 0.10 0 (0) 28.36 3 (1) 62.51 8 (4) 61.31 12 (263)

Send Email On Input 5.86 3 (2) 8.88 4 (2) 10.14 1 (1) 5.75 3 (2) 8.83 4 (2) 10.14 1 (1)

Retrieve Channel Members 6.08 2 (2) 0.67 7 (4) TO N/A 6.02 2 (2) TO N/A TO N/A

List and move files 14.89 9 (3) 199.48 11 (3) TO N/A 14.92 10 (3) 199.76 11 (3) 6.49 0 (0)

Clean current dir 1.68 1 (1) TO N/A TO N/A 1.70 1 (1) TO N/A TO N/A

Clean regular files in dir 9.27 2 (2) 6.53 3 (3) TO N/A 11.32 2 (2) 8.60 3 (3) TO N/A

Conversation members TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

SVG-Increase Circle Radius-
json

165.69 6 (4) 207.81 6 (4) 0.09 0 (0) 165.94 6 (4) 207.65 6 (4) 8.33 3 (4)

SVG-Increase Circle Radius 42.38 4 (3) 2.41 4 (4) 0.09 1 (1) 42.44 4 (3) 2.40 4 (4) 0.09 14 (8)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 27

Table 3. List of Blink Automation benchmarks, with synthesis time and number of SyGuS solver calls. For

each algorithm (A, RTS and 𝑘-search) we report the synthesis time in seconds, the number of total SyGuS

solver calls, and the subset of those calls that returned SAT, in parenthesis. When Syren times out (TO), it

does not report the number of solver calls (N/A).

Blink Automation
𝜒syn 𝜒T

A RTS 𝑘-search A RTS 𝑘-search

Name Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Copy Instance To New Region TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

Report Long Running Instances TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

Create Iam User And Notify 41.83 2 (1) 43.17 2 (1) 0.05 2 (1) 40.75 2 (1) 41.26 2 (1) 0.05 2 (2)

Table 4. List of AWS Automation Runbooks benchmarks, with synthesis time and number of SyGuS solver

calls. For each algorithm (A, RTS and 𝑘-search) we report the synthesis time in seconds, the number of total

SyGuS solver calls, and the subset of those calls that returned SAT, in parenthesis. When Syren times out

(TO), it does not report the number of solver calls (N/A).

AWS Automation Runbooks
𝜒syn 𝜒T

A RTS 𝑘-search A RTS 𝑘-search

Name Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Stop EC2Instance 4.51 0 (1) 9.03 0 (1) 0.24 0 (1) 4.55 0 (1) 9.05 0 (1) 0.18 0 (1)

Start EC2Instance 19.26 4 (3) 13.83 5 (2) 0.30 1 (1) 11.50 2 (1) 15.33 4 (2) 351.02 14 (58)

Configure S3Bucket Versioning 71.48 3 (0) 80.84 3 (0) 77.89 3 (0) 50.56 1 (0) 77.11 1 (0) 56.80 1 (0)

Configure Cloud Watch On EC2 13.72 2 (0) 13.72 2 (0) TO N/A 8.77 1 (0) 13.73 2 (0) TO N/A

Copy EC2Instance TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

Resize Instance TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

Set Required Tags 16.93 2 (0) 16.97 2 (0) 4.91 13 (43) 16.97 2 (0) 16.97 2 (0) 243.93 3 (0)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

28 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Table 5. List of Literature benchmarks, with synthesis time and number of SyGuS solver calls. For each

algorithm (A, RTS and 𝑘-search) we report the synthesis time in seconds, the number of total SyGuS solver

calls, and the subset of those calls that returned SAT, in parenthesis. When Syren times out (TO), it does not

report the number of solver calls (N/A).

Literature benchmarks
𝜒syn 𝜒T

A RTS 𝑘-search A RTS 𝑘-search

Name Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Sy
re
n
ru
nt
im

e

Sy
G
uS

ca
lls

(s
at
)

Api Phany Ex. 1.1 TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

Api Phany Ex. 1.2 18.64 4 (2) 19.64 4 (2) 0.07 0 (0) 17.72 4 (2) 19.43 4 (2) 84.93 1 (1)

Api Phany Ex. 1.6 28.84 6 (2) 24.64 6 (3) 0.09 1 (1) 27.49 6 (2) 24.45 6 (3) 174.70 1 (1)

Api Phany Ex. 1.8 21.74 4 (3) 9.18 3 (3) 0.16 1 (1) 23.76 4 (3) 11.60 3 (3) 0.18 1 (1)

Api Phany Ex. 2.1 1.41 1 (1) TO N/A 2.04 2 (2) 1.42 1 (1) TO N/A 1.68 2 (2)

Api Phany Ex. 2.3 168.98 12 (2) 184.82 15 (2) 0.04 0 (0) 161.13 12 (2) 184.17 15 (2) 161.41 10 (1)

Api Phany Ex. 2.5 1.40 1 (1) TO N/A 6.23 2 (2) 1.33 1 (1) TO N/A 6.07 2 (2)

Api Phany Ex. 2.6 20.50 4 (2) 23.62 4 (2) 0.14 0 (0) 30.28 4 (2) 31.88 4 (2) TO N/A

Api Phany Ex. 2.7 4.13 1 (1) TO N/A TO N/A 4.38 1 (1) TO N/A TO N/A

Api Phany Ex. 2.10 TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

Api Phany Ex. 2.11 13.72 4 (3) 8.79 3 (3) 0.11 1 (1) 13.90 4 (3) 8.21 3 (3) 0.12 1 (1)

Api Phany Ex. 2.13 40.39 9 (3) 31.81 7 (2) 0.08 0 (0) 40.53 9 (3) 31.15 7 (2) 28.94 0 (0)

Api Phany Ex. 3.1 <0.01 0 (0) TO N/A 1.97 1 (1) <0.01 0 (0) TO N/A 1.61 1 (1)

Api Phany Ex. 3.3 162.15 3 (1) 165.80 2 (1) 181.45 2 (0) 162.83 3 (1) 164.49 2 (1) 183.63 3 (0)

Api Phany Ex. 3.4* 4.08 1 (1) TO N/A 3.92 1 (1) 3.86 1 (1) TO N/A 4.03 5 (6)

Api Phany Ex. 3.6 3.39 1 (1) TO N/A 2.85 3 (3) 3.57 1 (1) TO N/A 3.02 3 (3)

Api Phany Ex. 3.7 3.06 1 (1) 106.23 2 (1) 3.57 1 (1) 3.07 1 (1) 105.35 2 (1) TO N/A

Api Phany Ex. 3.8 TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

Api Phany Ex. 3.9 TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

B Rewrite rules

B.1 Refinement Rewrite Rules

Recall our two sets of rewrite rules: refinement rewrite rules and synthesis rewrite rules . We ignore
the data transformation definitions associated with the program, since they do not intervene in the
rewrite.

Control Flow Manipulation. The following rewrite rule pulls calls to the same API out of a
conditional:

𝜆𝑧 S if 𝑐 {let 𝑥 = A(𝑦) S′} else {let 𝑥 ′ = A(𝑦′) S′′} R
⇝𝑡 𝜆𝑧 S let 𝑥 = A(𝑐? 𝑦 : 𝑦′) if 𝑐 {S′} else {S′′ [𝑥 ′ → 𝑥] } R [𝑥 ′ → 𝑥]

with 𝑡 (𝜎) = 𝜎 [𝑥 → 𝑐? 𝜎 (𝑥) : 𝜎 (𝑥 ′)] (3)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 29

Note that in this transformation, the condition is used both in transforming the arguments of the
API call moved out of the branches (in 𝑐? 𝑦 : 𝑦′) and in the update to the state (i.e. the mapping to
𝑥 becomes the evaluated expression 𝑐? 𝜎 (𝑥) : 𝜎 (𝑥 ′).

A symmetric rewrite rule pushes calls out of branches:

𝜆𝑧 S if 𝑐 {S′ let 𝑥 = A(𝑦)} else {S′′ let 𝑥 ′ = A(𝑦′)} R
⇝𝑡 𝜆𝑧 S if 𝑐 {S′} else {S′′} let 𝑥 = A(𝑐? 𝑦 : 𝑦′) R [𝑥 ′ → 𝑥]

with 𝑡 (𝜎) = 𝜎 [𝑥 → 𝜎 (𝑥) ∪ 𝜎 (𝑥 ′)] (4)

The following rewrite rule eliminates empty conditional statements:

𝜆𝑧 S if 𝑐 {} else {} R ⇝𝑡 𝜆𝑧 S R
with 𝑡 (𝜎) = 𝜎 (5)

And this rewrite rule inverts the branches of a conditional statement when the then branch is empty:

𝜆𝑧 S if 𝑐 {} else {S′} R ⇝𝑡 S if ¬𝑐 {S′} else {}R
with 𝑡 (𝜎) = 𝜎 (6)

More complex rewrite rules manipulate the control flow of the program to combine conditional
statements in order to group API calls:

𝜆𝑧 S if 𝑐 {let 𝑥 = A(𝑦)} else {if 𝑐′ {let 𝑥 ′ = A(𝑦′)} else {S′}} R
⇝𝑡 𝜆𝑧 S if 𝑐 ∨ 𝑐′ {let 𝑥 = A

(
𝑐? 𝑦 : 𝑦′

)
} else {S′} R [𝑥 ′ → 𝑥]

with 𝑡 (𝜎) = 𝜎 [𝑥 → 𝑐? 𝜎 (𝑥) : (𝑐′? 𝜎 (𝑥 ′) : ∅)] (7)

A symmetric rule handles statements where the branches in the nested conditionals are reversed:

𝜆𝑧 S if 𝑐 {let 𝑥 = A(𝑦)} else {if 𝑐′ {S′} else {let 𝑥 ′ = A(𝑦′)}} R
⇝ 𝜆𝑧 S if 𝑐 ∨ ¬𝑐′ {let 𝑥 = A

(
𝑐? 𝑦 : 𝑦′

)
} else {S′} R [𝑥 ′ → 𝑥]

with 𝑡 (𝜎) = 𝜎 [𝑥 → 𝑐? 𝜎 (𝑥) : (𝑐′? ∅ : 𝜎 (𝑥 ′))] (8)

In general, all rules have similar variation that consider symmetries in the program. We do not list
all of those.

Nested conditionals can be sequenced if the appropriate branches are empty:

𝜆𝑧 S if 𝑐 {let 𝑥 = A(𝑦) if 𝑐′ {let 𝑥 ′ = A(𝑦′)} else {}} else {}
⇝𝑡 𝜆𝑧 S if 𝑐 {let 𝑥 = A(𝑦)} else {} if 𝑐′ ∧ 𝑐 {let 𝑥 ′ = A(𝑦′)} else {} R

with 𝑡 (𝜎) = 𝜎 (9)

And similarly nested conditionals can be simplified:

𝜆𝑧 S if 𝑐 {if 𝑐′ {S′} else {}} else {}
⇝𝑡 𝜆𝑧 S if 𝑐′ ∧ 𝑐 {S′} else {} R

with 𝑡 (𝜎) = 𝜎 (10)

Parameter Elimination. A rewrite rule eliminates a parameter 𝑥 if it is not used in the body of
the program:

𝑥 ∉ 𝐹𝑉 (S) =⇒ 𝜆𝑥,𝑦 S ⇝𝑡 𝜆𝑦 S where 𝑡 (𝜎) = 𝜎
where 𝑥 ∉ 𝐹𝑉 (S) means that 𝑥 is not in the free variables of S, i.e. not used in S

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

30 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

Data Transform Elimination. Simple data transformations can be eliminated by inlining then in
the program. In general, we inline data transformations that return constants or return one of their
arguments. For example, a program 𝜆𝑥 S where 𝑓 := (𝑥,𝑦) → 𝑦 is transformed into a program
𝜆𝑥 S′ , in which S′ is the same as S modulo the inlining of 𝑓 . Inlining consists in substituting all
variables bound to the result of 𝑓 by the second argument of the binding.

Expression Simplification. There are additional refinement rules that operate only on the ex-
pressions that appear in the program and have no impact on the control flow (and their state
transformation functions are identity).

B.2 Synthesis Rewrite rules

The following synthesis rewrite rule replaces the branching condition of an if-then-else instruction
whose condition C(br) depends on br with a hidden function 𝜙 : in place of C(br), the branching
condition becomes the output of a function 𝜙 . This function may take as input all parameters
besides br, or any variable bound in the previous instructions of the program.

𝜆 br, 𝑦.
S
if C(br) {T }
else {R}

⇝𝑡

𝜆 𝜙. 𝜆 br, 𝑦.
S
let b = 𝜙(𝑦, BV(S))
if b {T }
else {R}

where 𝑡 (𝜎) = 𝜎 ∪ [𝑏 → 𝐶 (br)].

In the rewrite above, 𝐵𝑉 (S) denotes the set of bound variables in the statements of S. The rewrite
introduces a fresh variable b, which is assigned the value of the function 𝜙 and is used as the
if-condition. To maintain correctness, 𝑡 updates the augmented program state to ensure the value
of b is the same as C(br) for every input trace.
Retry loops are introduced by synthesis rules because the condition of the loop needs to be

synthesized in order for the loop to be valid. Retry loop introduction rewrites have the following
form:

𝜆 𝑦.
R
S
S′

if C {S′′}
T

⇝𝑡

𝜆 𝜙 𝜆 𝑦.
R
retry {
S
let b = 𝜙(BV(S),BV(R),𝑦)

} until b
T

where 𝑡 (𝜎) = 𝜎 [𝐵𝑉 (S), 𝐵𝑉 (S), 𝐵𝑉 (S) → 𝐵𝑉 (S), 𝐵𝑉 (S′), 𝐵𝑉 (S′′)] ∪ [𝑏 → ?S, ?S′, ?S′′]

A new variable b is introduced, bound to the result of the hidden function 𝜙 , and then used
as a stopping condition for the retry loop. Statements S, S′, and S′′ must all be calls to the
same API method. The state transformation now maps iterations of the bound variables of S
to the values of each statement that has been captured in the loop, represented by the vector
𝐵𝑉 (S), 𝐵𝑉 (S′), 𝐵𝑉 (S′′). When evaluating the program for a trace, the variables 𝐵𝑉 (S′′) will
not be defined for the traces where C is false, in which case the value is null. The valuation of
condition b is also a vector ?S, ?S′, ?S′′ that is computed by assigning the truth value of whether
the statement replaced by the iteration is the last statement in the trace (denoted by ?𝑆). In practice,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 31

we generalize this rule by considering patterns where matching statements are in sequence, and the
matching can happen within conditionals, as is the case with the last statement in this example rule.

C LLM experiment prompt

The following is the prompt used in every call to Claude 3.5 Sonnet in our comparison against
LLMs experiment described in §7. We describe the task that Syren solves, including the goals of
the synthesized program and lightweight restrictions on the output language. We choose to let the
LLM express the script in any language to improve its chances of success. We also emphasize that
the desired program must be able to replicate every provided trace, as that is our formal definition
of correctness. We also added text that attempts to counteract a tendency to include unnecessary
loops in the program.

You are a helpful assistant. You are given a set of traces from a program execution, and you
need to generate a script that the user can then use in some automation.
The traces are in the format of a list of json events, where each event is of the form:
```
{

"api": <THE API NAME>,
"request": {

<ARGUMENT 1>: <VALUE 1>,
<ARGUMENT 2>: <VALUE 2>,
...

},
"response": <RESPONSE VALUE>

}
```
That is, the event contains an API name in the "api" field, the request parameters in the "
request" field and the response value in the "response" field. The "request" is a JSON
object, where each member is one of the arguments of the API call.

The script you generate can use retry loops, list maps and conditionals. Each statement in
the script should either be a control flow statement (conditional or loop), an API call (
with the same name as in the traces and same arguments) or a data transformation function.
Data transformation functions can transform the output of an API call into another value
that can be used in a conditional or in another API call's arguments. You need to write the
script as part of a function with clearly identified parameters.

The script you generate MUST reproduce at least the same traces that it was given, for some
value of the parameters of the script.
The script SHOULD be also more general, meaning that different parameter values can be used,
and they would generate similar traces as the original ones.
You SHOULD NOT add loops when the traces do not show the need for loops, for example, if
each trace calls an API once, then the script should only call once.

D Detailed Benchmarks

This sections shows our detailed benchmarks of Cloud automation scripts. These scripts were
manually written to reflect Cloud automation tasks, and were used to evaluate Syren.

D.1 Custom Benchmarks

Hand-written benchmarks that perform common cloud automation tasks.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

32 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

D.1.1 BackupThenDeleteTable.

1 𝜆 tableName, backupName
2 let backupCreation = dynamodb.CreateBackup(TableName=tableName, BackupName=backupName)
3 let backupArns = getBackupArn(backupCreation)
4 let backupArn = first(backupArns)
5 retry {
6 let backupDesc = dynamodb.DescribeBackup(BackupArn=backupArn)
7 let backupStatus = getBackupStatus(backupDesc)
8 } until (backupStatus[0] == "AVAILABLE")
9

10 let tableDeletion = dynamodb.DeleteTable(TableName=tableName)
11

12 where
13 getBackupArn := "$.BackupDetails.BackupArn"
14 getBackupStatus := "$.BackupDescription.BackupDetails.BackupStatus"
15 first := (x) -> x[0]

D.1.2 CreateBucketThenFolder.

1 𝜆 bucketName
2 let bucketCreation = s3.CreateBucket(bucket=bucketName)
3 let folderCreation = s3.PutObject(bucket=bucketName, key="custom-logs/")

D.1.3 CreateImage.

1 𝜆 instanceId, noReboot
2 let instanceIds = list(instanceId)
3 let description = ec2.DescribeInstances(instanceIds=instanceIds)
4 let requestId = getRequestId(description)
5 let imageName = buildName(instanceId, requestId)
6 let result = ec2.CreateImage(instanceId=instanceId, noReboot=noReboot, name=imageName)
7 where
8 buildName := (X, Y) -> (X + "_auto_") + Y[0]
9 getRequestId := "$..x-amzn-requestid"

D.1.4 CreateImageFromSsmParameterAndLog.

1 𝜆 instances, x_3
2 let instanceDesc = ec2.DescribeInstances(InstanceIds=instances)
3 let parameter = ssm.GetParameter(Name="image-builder")
4 let instanceId = getExistingInstance(instances)
5 let imageName = getParameterValue(parameter)
6 let mustReboot = checkReboot(x_3)
7 let imageCreationRes = ec2.CreateImage(
8 InstanceId=instanceId, Name=imageName, NoReboot=mustReboot)
9 let imageId = getImageId(imageCreationRes)
10 let api_res_2_3 = console.Log(message=imageId)
11 where
12 getExistingInstance := (x) -> x[0]
13 getParameterValue := (x) -> x..Value[0]

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 33

14 checkReboot := (x) -> x == "ami-e27e9b0896ea30tb2"
15 getImageId := (x) -> x.ImageId

D.1.5 CreateTable.

1 𝜆 tableName, definitions, keys, provisioning
2 let tableCreating = dynamodb.CreateTable(tableName=tableName,
3 attributeDefinitions=definitions,
4 keySchema=keys,
5 provisionedThroughput=provisioning)

D.1.6 CreateTableThenInsertItem.

1 𝜆 tableName, definitions, keys, item
2 let provisionedThroughput = throughputSettings()
3 let tableCreating = dynamodb.CreateTable(TableName=tableName,
4 AttributeDefinitions=definitions,
5 KeySchema=keys,
6 ProvisionedThroughput=provisionedThroughput)
7

8 retry {
9 let tableDescription = dynamodb.DescribeTable(TableName=tableName)
10 let tableStatus = extractStatus(tableDescription)
11 } until (tableStatus[0] == "ACTIVE")
12 let tableInserting = dynamodb.PutItem(TableName=tableName,Item=item)
13

14 where
15 extractStatus := "$.Table.TableStatus"
16 throughputSettings := () -> { "ReadCapacityUnits" : 5, "WriteCapacityUnits" : 5 }

D.1.7 DeleteTable.

1 𝜆 tableName
2 let tableDeletion = dynamodb.DeleteTable(TableName=tableName)

D.1.8 MoveDdbItem.

1 𝜆 originTableName, destinationTableName, keyValue, keyId
2 let itemKey = composeKey(keyValue, keyId)
3 let itemResponse = dynamodb.GetItem(TableName=originTableName,Key=itemKey)
4 let items = selectItem(itemResponse)
5 let item = first(items)
6 let response = dynamodb.PutItem(TableName=destinationTableName,Item=item)
7 where
8 composeKey := (x, y) -> {y : {"S": x}}
9 first := (x) -> x[0]
10 selectItem := "$.Item"

D.1.9 MoveDdbItemIfPresent.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

34 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

1 𝜆 originTableName, destinationTableName, keyValue, keyId
2 let itemKey = composeKey(keyValue, keyId)
3 let itemResponse = dynamodb.GetItem(TableName=originTableName,Key=itemKey)
4 let items = selectItem(itemResponse)
5 if len(items) > 0 {
6 let item = first(items)
7 let response = dynamodb.PutItem(TableName=destinationTableName,Item=item)
8 }
9 where
10 composeKey := (x, y) -> {y : {"S": x}}
11 first := (x) -> x[0]
12 selectItem := "$.Item"

D.1.10 PutObjectIfNotPresent.

1 𝜆 bucketName, objectName
2 let listObjectsResult = s3.ListObjectsV2(Bucket=bucketName,Prefix=objectName)
3 let counts = getCount(listObjectsResult)
4 let count = fst(counts)
5 if count == 1 {
6 let contentKeys = getContentKey(listObjectsResult)
7 let contentKey = fst(contentKeys)
8 if contentKey == objectName {
9 return
10 }
11 }
12 let createObject = s3.PutObject(Bucket=bucketName,Key=objectName)
13 where
14 getCount := "$.KeyCount"
15 getContentKey := "$.Contents[0].Key"
16 fst := (X) -> X[0]

D.1.11 CopyS3Objects.

1 𝜆 originBucket, dest
2 let list_objects_result = s3.ListObjects(Bucket=originBucket, Prefix="*")
3 let keys = getObjectsKeys(list_objects_result)
4 for (key) in keys {
5 let objectInfo = s3.HeadObject(Bucket=dest, Key=key)
6 let c = getObjectVersion(objectInfo)
7 if isFile {
8 let moved = s3.Copy(
9 SourceBucket=originBucket,
10 SourceKey=key,
11 DestinationBucket=dest,
12 DestinationKey=key
13)
14 }
15 }
16 where
17 getObjectsKeys := (x) -> x..key
18 getObjectVersion := (x) -> x..version == "v1"

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 35

D.1.12 StartInstances.

1 𝜆 instanceIds
2 let x = ec2.StartInstances(InstanceIds=instanceIds)

D.1.13 StartInstancesWithTags.

1 𝜆 key, value
2 let filters = makeFilterTag(key,value)
3 let x = ec2.DescribeInstances(Filters=filters)
4 let iids = extractIids(x)
5 let resp = ec2.StartInstances(InstanceIds=iids)
6 where
7 extractIids := "$..InstanceId"
8 makeFilterTag := (k,v) -> [{"Name": "tag:" + k, "Values" : [v]}]

D.1.14 StopAllRunningInstances.

1 𝜆

2 let filters = runningInstancesFilter()
3 let runningInstances = ec2.DescribeInstances(Filters=filters)
4 let instanceIds = extractInstanceIds(runningInstances)
5 let res = ec2.StopInstances(InstanceIds=instanceIds)
6 where
7 runningInstancesFilter := () -> [dict(Name="instance-state-name",Values=["running"])]
8 extractInstanceIds := "$..InstanceId"

D.1.15 StopInstances.

1 𝜆 instanceIds
2 let x = ec2.StopInstances(InstanceIds=instanceIds)

D.1.16 StopInstancesCond.

1 𝜆 instanceId
2 let ids = list(instanceId)
3 let _ = ec2.StopInstances(InstanceIds=ids, Force=False)
4 let s = ec2.DescribeInstanceStatus(InstanceIds=ids, IncludeAllInstances=True)
5 let statuses = extractInstanceStatus(s)
6 let status = first(statuses)
7 if status != "stopped" {
8 let _ = ec2.StopInstances(InstanceIds=ids, Force=True)
9 }
10 where
11 first := (X) -> X[0]
12 extractInstanceStatus := "$.InstanceStatuses[0].InstanceState.Name"

D.1.17 TagInstancesWithDryRun.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

36 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

1 𝜆 instanceIds, key, value
2 let tags = makeTags(key,value)
3 let x = ec2.CreateTags(Resources=instanceIds, Tags=tags, DryRun=True)
4 if x == "ok" {
5 let _ = ec2.CreateTags(Resources=instanceIds, Tags=tags)
6 }
7 where
8 makeTags := (k,v) -> [dict(Key=k, Value=v)]

D.1.18 WaitForInputThenSendEmail.

1 𝜆 user_email
2 retry {
3 let payload = os.QueryInput()
4 let b = isNonEmpty(_r)
5 } until (b)
6 let _ = messages.SendEmail(payload=payload, userId=isNonEmpty)
7 where
8 isNonEmpty := (x) -> ! (x == "")

D.1.19 RetrieveChannelMembers.

1 𝜆

2 let slackResponse = slack.GetConversationsList()
3 let channelId = getFirstChannelId(slackResponse)
4 let conversationMembersResponse = slack.GetConversationMembers(channel=channelId)
5 let responseUserList = getMembersFunction(conversationMembersResponse)
6 for (memberUser) in responseUserList {
7 let user_info = slack.GetUserInfo(user=memberUser)
8 }
9 where
10 getFirstChannelId := (x) -> x..id[0]
11 getMembersFunction := (x) -> x.members

D.1.20 SVG-IncreaseCircleRadius.

1 𝜆 elementId
2 let elt = js.getElementAttributeById(Attribute=0, Id=elementId)
3 let incr = f(api_res_2_0)
4 let api_res_2_1 = js.setElementAttribute(Attribute=0, Id=elementId, Value=incr)
5 where
6 f := (x) -> 1 + x

D.1.21 SVG-IncreaseCircleRadius-json.

1 𝜆 document
2 let circle = js.getElementById(Document=document,Id="circle1")
3 let radius = js.getElementAttribute(Element=circle, Name="r")
4 let result = js.setElementAttribute(Element="circle1", Name="r", Value=radius)
5 where
6 add10 := (circle) -> circle + 10

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 37

D.1.22 SVG-ScaleAndMove.

1 𝜆 x_1
2 let api_res_2_0 = js.getElementAttributeById(Attribute=0, Id=x_1)
3 let param_elim_12 = f?_22(api_res_2_0)
4 let api_res_2_1 = js.setElementAttribute(Attribute=0, Id=x_1, Value=param_elim_12)
5 where
6 f?_22 := (arg0_2) -> 1 + arg0_2

D.1.23 List and Move Files.

1 𝜆 source, dest
2 let paths = os.Ls(Dir=source, Pattern="/*")
3 for (path) in paths {
4 let isFile = os.IsFile(Path=path)
5 if isFile {
6 let moved = os.Mv(Path=path, Dest=dest)
7 }
8 }

D.1.24 Clean Current Dir.

1 𝜆 dirName
2 let files = os.OpenAndGetdents(Dir=dirName)
3 let names = f1(files)
4 for (path) in (names) {
5 let isfile_res = os.IsFile(Path=path)
6 if isfile_res {
7 let rm_res = os.Rm(Path=path)
8 }
9 }
10 where:
11 f1 : x -> $..d_name

D.1.25 Clean Regular Files in Dir.

1 𝜆 dirName
2 let getdents_res = os.OpenAndGetdents(Dir=dirName)
3 let f1_res = f1(getdents_res)
4 for (path) in (f1_res) {
5 let fstat_res = os.OpenAndGetdentsFstat(Path=path)
6 let f2_res = f2(fstat_res)
7 if f2_res {
8 let mv_res = os.Rm(Path=path)
9 }
10 }
11 where:
12 f1 : x -> $..d_name
13 f2 : x -> $.st_type == "S_IFREG"

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

38 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

D.2 Blink automation benchmarks

Tasks from the Blink automation library [7], where various APIs are interfaced.

D.2.1 CopyEC2InstanceToNewRegion.

1 𝜆 instanceId, imageName, sourceRegion, destRegion, destName
2 let createImageResponse = ec2.CreateImage(InstanceId=instanceId, Name=imageName)
3 let imageId = extractImageId(createImageResponse)
4 let imageIds = list(imageId)
5 retry {
6 let describeImagesResponse = ec2.DescribeImages(ImageIds=imageIds)
7 let state = extractImageStatus(describeImagesResponse)
8 } until (state == "available")
9 let copyResponse = ec2.CopyImage(
10 Name=destName, SourceImageId=imageId, SourceRegion=sourceRegion, Region=destRegion)
11

12 where
13 extractImageId := "$.ImageId"
14 extractImageStatus := "$..State"

D.2.2 CreateIamUserAndNotify.

1 𝜆 userName, notificationEmail
2 let createUserResponse = iam.CreateUser(UserName=userName)
3 let user = extractUser(createUserResponse)
4 let sendEmail = blink.SendEmail(Content=)
5 where
6 extractUser := "$.User"

D.3 AWS Automation Runbooks Benchmarks

Scripts collected from AWS Systems Manager Automation Runbooks.

D.3.1 AWS-ConfigureCloudWatchOnEC2Instance.

1 𝜆 instanceId, status, properties
2 let instanceIds = list(instanceId)
3 if status == "Enabled" {
4 let _ = ec2.MonitorInstances(InstanceIds=instanceIds)
5 } else {
6 let _ = ec2.UnmonitorInstances(InstanceIds=instanceIds)
7 }

D.3.2 AWS-ConfigureS3BucketVersioning.

1 𝜆 bucketName, versioningState
2 if ((versioningState != "Enabled") && (versioningState != "Suspended")) {
3 return
4 }
5 let config = makeConfig(versioningState)
6 let result = s3.PutBucketVersioning(Bucket=bucketName, VersioningConfiguration=config)
7 where
8 makeConfig := (x) -> dict(MFADelete="Disabled",Status=x)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 39

D.3.3 AWS-ResizeInstance.

1 𝜆 instanceId, instanceType
2 let instanceIds = list(instanceId)
3 let description = ec2.DescribeInstances(InstanceIds=instanceIds)
4 let actualType = getInstanceType(description)
5 if (actualType != instanceType) {
6 let _ = ec2.StopInstances(InstanceIds=instanceIds)
7 retry {
8 let x = ec2.DescribeInstanceStatus()
9 let status = extractInstanceStatus(x)
10 } until (status == "stopped")
11 let v = makeValue(instanceType)
12 let _ = ec2.ModifyInstanceAttribute(InstanceId=instanceId, InstanceType=v)
13 let _ = ec2.StartInstances(InstanceIds=instanceIds)
14 retry {
15 let x = ec2.DescribeInstanceStatus()
16 let status = extractInstanceStatus(x)
17 } until (status == "running")
18 }
19 where
20 extractInstanceStatus := "$.InstanceStatuses[0].InstanceState.Name"
21 getInstanceType := "$.Reservations[0].Instances[0].InstanceType"
22 makeValue := (x) -> {'Value' : x}

D.3.4 AWS-SetRequiredTags.

1 𝜆 tags, resources
2 let taggedResourcesResponse = resourcegroupstaggingapi.TagResources(
3 resourceARNList=resources,
4 tags=tags)

D.3.5 AWS-StartEC2Instance.

1 𝜆 instanceId
2 let ids = list(instanceId)
3 let s = ec2.DescribeInstances(InstanceIds=ids)
4 let status = extractInstanceStatus(s)
5 if status != "running" {
6 let _ = ec2.StartInstances(InstanceIds=ids)
7 }
8 where
9 first := (X) -> X[0]
10 extractInstanceStatus := "$.Reservations[0].Instances[0].State.Name"

D.3.6 AWS-StopEC2Instance.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

40 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

1 𝜆 instanceId
2 let ids = list(instanceId)
3 let _ = ec2.StopInstances(InstanceIds=ids, Force=False)
4 let _ = ec2.StopInstances(InstanceIds=ids, Force=True)

D.3.7 AWSSupport-CopyEC2Instance.

1 𝜆 instanceId,
2 keyPair,
3 region,
4 subnetId,
5 instanceType,
6 securityGroupIds,
7 keepImageSourceRegion,
8 keepImage,
9 keepImageDestinationRegion,
10 noRebootInstanceBeforeTakingImage
11

12 (** Extract information from instance *)
13 let instanceIds = list(instanceId)
14 let instanceInfo = ec2.DescribeInstances(InstanceIds=instanceIds)
15 if instanceInfo == null {
16 return
17 }
18 let sourceInstanceTypes = extractSourceInstanceType(instanceInfo)
19 let sourceAvailabilityZones = extractSourceAvailabilityZone(instanceInfo)
20 let sourceSubnetIds = extractSourceSubnetId(instanceInfo)
21 let sourceKeyPairs = extractSourceKeyPair(instanceInfo)
22 let sourceSecurityGroupIds = extractSourceSecurityGroupIds(instanceInfo)
23 let sourceRootDeviceNames = extractSourceRootDeviceName(instanceInfo)
24

25 (** Select *)
26 let sourceInstanceType = first(sourceInstanceTypes)
27 let sourceAZ = first(sourceAvailabilityZones)
28 let sourceSubnetId = first(sourceSubnetIds)
29 let sourceKeyPair = first(sourceKeyPairs)
30

31 (** Prepare the parameters for the new instance *)
32 let regionToUse = selectFirstNonEmpty(region, sourceAZ)
33 let isSameRegion = isSame(regionToUse, sourceAZ)
34 let instanceTypeToUse = selectFirstNonEmpty(instanceType, sourceInstanceType)
35 let subnetIdToUse = select(isSameRegion, subnetId, sourceSubnetId)
36 let securityGroupIdsToUse =
37 select(isSameRegion, securityGroupIds, sourceSecurityGroupIds)
38 // Create new image
39 let imageName = makeName(instanceId)
40 let newImage = ec2.CreateImage(
41 InstanceId=instanceId, NoReboot=noRebootInstanceBeforeTakingImage, Name=imageName)
42 let newImageIds = extractImageId(newImage)
43 retry {
44 let imageInfo = ec2.DescribeImages(ImageIds=newImageIds)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 41

45 let imageState = extractImageState(imageInfo)
46 } until (imageState[0] == "available")
47 if (imageState[0] != "available") {
48 return
49 }
50 (** Tag image *)
51 let tags = makeTags(instanceId)
52 let _ = ec2.CreateTags(Resources=newImageIds, Tags=tags)
53 (** Launch instance *)
54 let tagSpecs = makeTagSpecs(instanceId)
55 let newImageId = first(newImageIds)
56 if isSameRegion {
57 if keyPair == "" {
58 let r1 = ec2.RunInstances(
59 ImageId=newImageId,
60 SubnetId=subnetIdToUse,
61 InstanceType=instanceTypeToUse,
62 SecurityGroupIds=securityGroupIdsToUse,
63 TagSpecifications=tagSpecs,
64 MinCount=1,
65 MaxCount=1)
66 } else {
67 let r1 = ec2.RunInstances(
68 ImageId=newImageId,
69 SubnetId=subnetIdToUse,
70 InstanceType=instanceTypeToUse,
71 SecurityGroupIds=securityGroupIdsToUse,
72 KeyName=keyPair,
73 TagSpecifications=tagSpecs,
74 MinCount=1,
75 MaxCount=1)
76 }
77 let newInstanceIds = getInstanceId(r1)
78

79 // Wait for the new instance to be running
80 let newInstanceId = first(newInstanceIds)
81 retry {
82 let newInstances = ec2.DescribeInstanceStatus(InstanceIds=newInstanceIds)
83 let newInstanceStatus = extractInstanceStatus(newInstances)
84 } until ((len(newInstanceStatus) > 0) && (newInstanceStatus[0] == "running"))
85

86 if !keepImageSourceRegion {
87 let deregisterResult = ec2.DeregisterImage(ImageId=newImageId)
88 let snapshots = getSnapshots(imageInfo)
89 let snapshot = first(snapshots)
90 let deleteSnapshotResult = ec2.DeleteSnapshot(SnapshotId=snapshot)
91 }
92 }
93

94 (** Transformation Definitions *)
95 where
96 extractSourceInstanceType := "$.Reservations[0].Instances[0].InstanceType"

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

42 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

97 extractSourceAvailabilityZone :=
98 "$.Reservations[0].Instances[0].Placement.AvailabilityZone"
99 extractSourceSubnetId := "$.Reservations[0].Instances[0].SubnetId"
100 extractSourceKeyPair := "$.Reservations[0].Instances[0].KeyName"
101 extractSourceSecurityGroupIds :=
102 "$.Reservations[0].Instances[0].SecurityGroups..GroupId"
103 extractSourceRootDeviceName := "$.Reservations[0].Instances[0].RootDeviceName"
104 selectFirstNonEmpty := (X, Y) -> X == "" ? Y : X
105 select := (B, X, Y) -> B ? (X == "" ? Y : X) : X
106 isSame := (X,Y) -> X == Y
107 first := (X) -> X[0]
108 makeName := (X) -> "Api Doc AWSSupport-CopyEC2Instance LocalAmi for " + X
109 extractImageId := "$.ImageId"
110 extractImageState := "$.Images[0].State"
111 getSnapshots := "$.Images[0]..SnapshotId"
112 getInstanceId := "$.Instances[0].InstanceId"
113 extractInstanceStatus := "$.InstanceStatuses[0].InstanceState.Name"
114 makeTags := (X) -> [
115 {"Key" : "Name", "Value" : "AWSSupport-CopyEC2Instance LocalAmi for" + X },
116 {"Key" : "AWSSupport-CopyEC2Instance", "Value" : "some-unique-id" },
117 {"Key" : "CreatedBy", "Value": "AWSSupport-CopyEC2Instance" }
118]
119 makeTagSpecs := (X) -> [{
120 "ResourceType": "instance",
121 "Tags" : [
122 { "Key" : "Name", "Value" : "AWSSupport-CopyEC2Instance Source: " + X },
123 { "Key": "CreatedBy", "Value": "AWSSupport-CopyEC2Instance" }
124]
125 }]

D.4 ApiPhany Benchmarks

These are tasks adapted from previous literature on API-composing programs Synthesis, ApiPhany
[18], that use Stripe and Slack APIs.

D.4.1 ApiPhanyExample.1.1.

1 𝜆 location_id
2 let res = stripe.GetTransactions(Location=location_id)
3 let transactions = extractTransactionsOrderIds(res)
4 for transaction in transactions {
5 let _ = console.Log(Message=transaction)
6 }
7 where
8 extractTransactionsOrderIds := (x) -> x..OrderId

D.4.2 ApiPhanyExample.1.2.

1 𝜆 user_email
2 let userLookupResult = slack.LookupByEmail(name=user_email)
3 let user_id = getUserIdFromLookupResult(userLookupResult)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 43

4 let user_conversations = slack.ConversationsOpen(users=user_id)
5 let channelId = getChannelIdFromConversations(user_conversations)
6 let slack_response = slack.PostMessage(channel=channelId)
7 where
8 getChannelIdFromConversations := (x) -> ((x[0])[2]).channelId
9 getUserIdFromLookupResult := (x) -> x.user..id

D.4.3 ApiPhanyExample.1.6.

1 𝜆 channelId, messageTimestamp
2 let slackResponse = slack.ChatPostMessage(channel=channelId, ts=messageTimestamp)
3 let messageThreadId = getThreadFromResponse(slackResponse)
4 let response = slack.ChatUpdate(channel=channelId, ts=messageThreadId)
5 where
6 getThreadFromResponse := (x) -> x..thread[1]

D.4.4 ApiPhanyExample.1.8.

1 𝜆 channelId
2 let conversationInfoResponse = slack.GetConversationInfo(channel=channelId)
3 let latestMessageTimestamp = getLatestMessageTimestamp(conversationInfoResponse)
4 let channelId = getChannelId(conversationInfoResponse)
5 let conversationHistoryResponse = slack.GetConversationsHistory(
6 channel=channelId, oldest=latestMessageTimestamp)
7 where
8 getChannelId := (x) -> x.id
9 getLatestMessageTimestamp := (y) -> y.latest

D.4.5 ApiPhanyExample.2.1.

1 𝜆 customer, productId
2 let api_res_2_0 = v1.GetPrices(currency="USD", productId=productId)
3 let typ = listTypes(api_res_2_0)
4 for (typ) in (types) {
5 et _r = v1.PostSubcriptions(customer=customer, productId=productId, type=typ)
6 }
7 where
8 listTypes := (x) -> x..type

D.4.6 ApiPhanyExample.2.3.

1 𝜆 customerId, productCurrency, productName, unitAmount
2 let productResponse = v1.PostProducts(name=productName)
3 let productId = getProductIdFromProductResponse(productResponse)
4 let productPriceResponse = v1.PostPrices(
5 currency=productCurrency, product=productId, unit_amount=unitAmount)
6 let productId = getPriceId(productPriceResponse)
7 let productInvoiceItemsResponse = v1.PostInvoiceItems(customer=customerId, price=productId)
8 where
9 getPriceId := (x) -> x..id[0]
10 getProductIdFromProductResponse := (y) -> y..id[0]

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

44 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

D.4.7 ApiPhanyExample.2.5.

1 𝜆 customer
2 let invoiceApiResponse = v1.GetInvoices(customer=customer)
3 let invoiceIds = getInvoiceIdFromResponse(invoiceApiResponse)
4 for (invoiceId) in (invoiceIds) {
5 let chargesResponse = v1.GetCharges(invoiceId=invoiceId)
6 }
7 where
8 getInvoiceIdFromResponse := (x) -> x.data

D.4.8 ApiPhanyExample.2.6.

1 𝜆 subscriptionId
2 let subscriptionResponse = stripe.GetSubscription(SubscriptionExposedId=subscriptionId)
3 let subscription_id = getSubscriptionId(subscriptionResponse)
4 let subscriptionInvoice = stripe.GetInvoice(invoice=subscription_id)
5 let invoiceId = getInvoiceAmountPaid(subscriptionInvoice)
6 let refundedInvoice = stripe.Refund(charge=invoiceId)
7 where
8 getInvoiceAmountPaid := (x) -> x.amount_paid
9 getSubscriptionId := (x) -> x..id[1]

D.4.9 ApiPhanyExample.2.7.

1 let customerApiResponse = v1.GetCustomers()
2 let filteredCustomers = getCustomerEmails(customerApiResponse)
3 for (customerEmail) in (filteredCustomers) {
4 let customerEmail = mail.Show(email=customerEmail)
5 }
6 where
7 getCustomerEmails := (x) -> x..email

D.4.10 ApiPhanyExample.2.10.

1 𝜆 customerId, defaultPaymentId
2 let api_res_1_0 = v1.GetSubscriptions(customer=customerId)
3 let subscriptionIds = getSubscriptionIds(api_res_1_0)
4 for (subcriptionId) in (subscriptionIds) {
5 let _r =
6 v1.PostSubscriptionPayment(
7 default_payment=defaultPaymentId,
8 subscriptionExposedId=subscriptionId)
9 }
10 where
11 getSubscriptionIds := (x) -> x.data..id

D.4.11 ApiPhanyExample.2.11.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

Program Synthesis From Partial Traces 45

1 𝜆 customer_id
2 let getCustomerResult = stripe.GetCustomer(customer=customer_id)
3 let default_source = get_default_source(getCustomerResult)
4 let _ = stripe.DeletePaymentSource(customer=customer_id, id=default_source)
5 where
6 get_default_source := (x) -> x.default_source

D.4.12 ApiPhanyExample.2.13.

1 𝜆 customerId, price
2 let invoiceItemsResponse = stripe.InvoiceItems(customer=customerId, price=price)
3 let invoiceId = getInvoiceId(invoiceItemsResponse)
4 let invoice = stripe.Invoice(customer=customerId, invoice=invoiceId)
5 let invoice = stripe.SendInvoice(invoice=invoiceId)
6

7 where
8 getInvoiceId := (x) -> x..invoiceId[0]

D.4.13 ApiPhanyExample.3.1.

1 𝜆 locationId
2 let invoice_response = square.GetInvoices(locationId=locationId)

D.4.14 ApiPhanyExample.3.3.

1 𝜆 tax_id
2 let list_res = slack.GetCatalog()
3 let objects = extractObjects(list_res)
4 for (object) in objects {
5 let tax_ids = taxIds(object)
6 for (id) in tax_ids {
7 let p = tax_predicate(tax_id, id)
8 if (p)) {
9 let x = console.Log(object)
10 }
11 }
12 }
13

14 where
15 extractObjects := (x) -> x.objects
16 taxIds := (x) -> x.item_data.tax_ids
17 tax_predicate := (x,y) -> x == y

D.4.15 ApiPhanyExample.3.4.

1 let catalogList = square.ListCatalog()
2 let catalogMessages = getDiscountTypeFromResponse(catalogList)
3 for (message) in (catalogMessages) {let discountDetails = console.Log(message=message) }
4 where
5 getDiscountTypeFromResponse := (x) -> x..discountType

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

46 Margarida Ferreira, Victor Nicolet, Joey Dodds, and Daniel Kroening

D.4.16 ApiPhanyExample.3.6.

1 let paymentsResponse = square.GetPayments()
2 let paymentMessages = getPaymentNotes(paymentsResponse)
3 for (paymentMessage) in (paymentMessages) {
4 let paymentNotes = console.Log(message=paymentMessage)
5 }
6 where
7 getPaymentNotes := (x) -> x..payment_note

D.4.17 ApiPhanyExample.3.7.

1 𝜆 location_id
2 let res = stripe.GetTransactions(Location=location_id)
3 let transactions = extractTransactionsOrderIds(res)
4 for transaction in transactions {
5 let _ = console.Log(Message=transaction)
6 }
7 where
8 extractTransactionsOrderIds := (x) -> x..OrderId

D.4.18 ApiPhanyExample.3.8.

1 𝜆 locationId, transactionId
2 let res = square.BatchRetrieveOrders(LocationId=locationId, TransactionId=transactionId);
3 let orders = getOrders(orders)
4 for order in orders {
5 let line_items = getLineItems(order)
6 for line_item in line_items {
7 let _ = console.Log(Message=line_item)
8 }
9 }
10

11 where
12 getOrders := (x) -> x.orders
13 getLineItems := (x) -> x.line_items

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article . Publication date: June 2025.

	Abstract
	1 Introduction
	2 From Partial Traces to Programs
	3 Background and Definitions
	3.1 Core Language Syntax
	3.2 Program traces
	3.3 DSL Semantics

	4 Synthesis Problem
	4.1 Correct Solutions
	4.2 Quality Constraint

	5 Rewriting Programs
	5.1 Trace Valuation
	5.2 Synthesizing Hidden Functions

	6 Rewrite Strategies
	6.1 Baselines

	7 Evaluation
	7.1 Implementation
	7.2 Benchmarks
	7.3 Cost Functions
	7.4 Results

	8 Related Work
	9 Conclusion and Future Work
	References
	A Benchmarks and Detailed Results
	B Rewrite rules
	B.1 Refinement Rewrite Rules
	B.2 Synthesis Rewrite rules

	C LLM experiment prompt
	D Detailed Benchmarks
	D.1 Custom Benchmarks
	D.2 Blink automation benchmarks
	D.3 AWS Automation Runbooks Benchmarks
	D.4 ApiPhany Benchmarks

